
Progress DataDirect for
ODBC for Microsoft SQL
Server Wire Protocol Driver
User's Guide

Release 8.0.2

Copyright

© 2022 Progress Software Corporation and/or one of its subsidiaries or affiliates. All
rights reserved.
These materials and all Progress® software products are copyrighted and all rights are reserved by Progress
Software Corporation. The information in these materials is subject to change without notice, and Progress
Software Corporation assumes no responsibility for any errors that may appear therein. The references in these
materials to specific platforms supported are subject to change.

#1 Load Balancer in Price/Performance, 360 Central, 360 Vision, Chef, Chef (and design), Chef Habitat, Chef
Infra, Code Can (and design), Compliance at Velocity, Corticon, Corticon.js, DataDirect (and design), DataDirect
Cloud, DataDirect Connect, DataDirect Connect64, DataDirect XML Converters, DataDirect XQuery, DataRPM,
Defrag This, Deliver More Than Expected, DevReach (and design), Driving Network Visibility, Flowmon, Inspec,
Ipswitch, iMacros, K (stylized), Kemp, Kemp (and design), Kendo UI, Kinvey, LoadMaster, MessageWay,
MOVEit, NativeChat, OpenEdge, Powered by Chef, Powered by Progress, Progress, Progress Software
Developers Network, SequeLink, Sitefinity (and Design), Sitefinity, Sitefinity (and design), Sitefinity Insight,
SpeedScript, Stylized Design (Arrow/3D Box logo), Stylized Design (C Chef logo), Stylized Design of Samurai,
TeamPulse, Telerik, Telerik (and design), Test Studio, WebSpeed, WhatsConfigured, WhatsConnected,
WhatsUp, and WS_FTP are registered trademarks of Progress Software Corporation or one of its affiliates or
subsidiaries in the U.S. and/or other countries.

Analytics360, AppServer, BusinessEdge, Chef Automate, Chef Compliance, Chef Desktop, Chef Workstation,
Corticon Rules, Data Access, DataDirect Autonomous REST Connector, DataDirect Spy, DevCraft, Fiddler,
Fiddler Classic, Fiddler Everywhere, Fiddler Jam, FiddlerCap, FiddlerCore, FiddlerScript, Hybrid Data Pipeline,
iMail, InstaRelinker, JustAssembly, JustDecompile, JustMock, KendoReact, OpenAccess, PASOE, Pro2,
ProDataSet, Progress Results, Progress Software, ProVision, PSE Pro, Push Jobs, SafeSpaceVR, Sitefinity
Cloud, Sitefinity CMS, Sitefinity Digital Experience Cloud, Sitefinity Feather, Sitefinity Thunder, SmartBrowser,
SmartComponent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog, SmartFolder,
SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow, Supermarket, SupportLink,
Unite UX, and WebClient are trademarks or service marks of Progress Software Corporation and/or its
subsidiaries or affiliates in the U.S. and other countries. Java is a registered trademark of Oracle and/or its
affiliates. Any other marks contained herein may be trademarks of their respective owners.
Please refer to the NOTICE.txt or Release Notes – Third-Party Acknowledgements file applicable to a particular
Progress product/hosted service offering release for any related required third-party acknowledgements.

Updated: 2022/05/26

3The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.24

Copyright

Table of Contents

Welcome to the Progress DataDirect for ODBC for SQL Server Wire
Protocol Driver..9

What's new in this release?..10
Driver requirements..13
ODBC compliance..13
Version string information...13

getFileVersionString function...15
Support for multiple environments..15

Support for Windows environments...15
Support for UNIX and Linux environments...17

Data types...21
Unicode support...23
Retrieving data type information..24

Troubleshooting..25
Contacting Technical Support...26

Getting started ...27
Configuring and connecting on Windows..27

Configuring a data source..28
Testing the connection...28

Configuring and connecting on UNIX and Linux...29
Environment configuration...29
Test loading the driver..30
Configuring a data source in the system information file...30
Testing the connection...31

Tutorials..33
Accessing data in Microsoft Excel (Windows only)...33
Accessing data in Microsoft Excel from the Query Wizard (Windows only)...35

Using the driver..39
Configuring and connecting to data sources...40

Configuring the product on UNIX/Linux..40
Data source configuration through a GUI...49
Using a connection string...77
Using a logon dialog box..77
Performance considerations..78

5The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Contents

Using failover..80
Connection failover..81
Extended connection failover...82
Select connection failover..84
Guidelines for primary and alternate servers...85
Using client load balancing ...85
Using Connection Retry...86
Configuring failover-related options...86

Using security..90
Authentication..90
Data encryption across the network...95
TLS/SSL encryption...95
Always Encrypted...104

Using DataDirect Connection Pooling...107
Creating a connection pool..108
Adding connections to a pool...108
Removing connections from a pool..108
Handling dead connections in a pool...109
Connection pool statistics..110
Summary of pooling-related options..110

Using DataDirect Bulk Load..111
Bulk Export and Load Methods..112
Exporting data from a database...113
Bulk loading to a database...114
The bulk load configuration file ...115
Sample applications...118
Character set conversions...118
External overflow files..118
Limitations..119
Summary of related options for DataDirect Bulk Load...119

Using IP addresses...122
XA interface support...122
Binding parameter markers...125
Isolation and lock levels supported...125

Using the Snapshot isolation level...125
Number of connections and statements supported..126
SQL support..126
Using arrays of parameters...126
Support for Azure Synapse Analytics and Analytics Platform System...126
Inserts on IDENTITY columns in data replication scenarios...128

Connection option descriptions...129
AllowedOpenSSLVersions..135
Alternate Servers..136

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.26

Contents

Always Report Trigger Results..137
AnsiNPW...137
Application Intent..138
Application Name..139
Application Using Threads..139
Authentication Method..140
Batch Size ..141
Bulk Binary Threshold...142
Bulk Character Threshold...142
Bulk Load Threshold...143
Bulk Options..144
Column Encryption..145
Connection Pooling...146
Connection Reset...147
Connection Retry Count..148
Connection Retry Delay..148
Crypto Protocol Version..149
CryptoLibName...150
Data Source Name...151
Database...152
Description..152
Domain..153
Enable Bulk Load..153
Enable Quoted Identifiers...154
Enable Replication User...155
Enable Server Side Cursors...155
Encryption Method..156
Failover Granularity...157
Failover Mode...158
Failover Preconnect..159
Fetch TSWTZ as Timestamp..159
Fetch TWFS as Time..160
Field Delimiter...161
GSS Client Library..161
Host Name..162
Host Name In Certificate...163
IANAAppCodePage..164
Initialization String...165
Keep Connection Active..166
Key Cache Time To Live ..167
Key Store Principal Id ..168
Key Store Secret ..169
Language..169
Load Balance Timeout..170
Load Balancing...171

7The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Contents

Login Timeout...171
Max Pool Size...172
Min Pool Size..173
Multi-Subnet Failover ...174
Packet Size...174
Password..175
Port Number..176
PRNGSeedFile...176
PRNGSeedSource ...178
Proxy Host...179
Proxy Mode...180
Proxy Password..181
Proxy Port...181
Proxy User..182
Query Timeout..183
Record Delimiter...184
Report Codepage Conversion Errors..184
Socket Idle Time...185
SSLLibName...186
TCP Keep Alive...187
Trust Store..187
Trust Store Password..189
Use Snapshot Transactions..189
User Name..190
Validate Server Certificate...191
Workstation ID...191
XML Describe Type...192

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.28

Contents

1
Welcome to the Progress DataDirect for
ODBC for SQL Server Wire Protocol Driver

The Progress DataDirect for ODBC SQL Server Wire Protocol driver (the SQL Server Wire Protocol driver)
provides read-write access to the following data sources:

Cloud:

• Microsoft Azure Synapse Analytics

• Microsoft Windows Azure SQL Database

On premise:

• Microsoft Analytics Platform System

• Microsoft SQL Server

The documentation for the driver also includes the Progress DataDirect for ODBC Drivers Reference. The
reference provides general reference information for all DataDirect drivers for ODBC, including content on
troubleshooting, supported SQL escapes, and DataDirect tools. For the complete documentation set, visit to
the Progress DataDirect Connectors Documentation Hub:
https://docs.progress.com/bundle/datadirect-connectors/page/DataDirect-Connectors-by-data-source.html.

For details, see the following topics:

• What's new in this release?

• Driver requirements

• ODBC compliance

• Version string information

9The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

https://docs.progress.com/bundle/datadirect-connectors/page/DataDirect-Connectors-by-data-source.html

• Support for multiple environments

• Data types

• Troubleshooting

• Contacting Technical Support

What's new in this release?
Support and certification
Visit the following web pages for the latest support and certification information.

• Release Notes (includes the latest OpenSSL support information)

• Supported Configurations

• DataDirect Support Matrices

Changes Since 8.0.2 GA
• Driver Enhancements

• The driver has been enhanced to support theWindows certificate store for TLS/SSL server authentication.
See TLS/SSL server authentication on page 96 for details.

• The driver has been enhanced to support TLS/SSL server authentication for the applications deployed
in a serverless environment. The driver stores the TLS/SSL certificates in memory and lets applications
use TLS/SSL server authentication without storing the truststore file on the disk. To use this enhancement,
specify the content of the certificate in the refreshed Trust Store (Truststore) connection option or
the new SQL_COPT_INMEMORY_TRUSTSTORECERT pre-connection attribute. See Trust Store on page
187 and Using SQL_COPT_INMEMORY_TRUSTSTORECERT on page 98 for details.

• The driver has been enhanced to support connecting to servers using aliases created by the SQL Server
Configuration Manager. To support this feature, the Host Name (HostName) connection option has been
refreshed to accept alias names as valid values. The driver uses the server name and port number
provided by the alias when establishing a connection. See Host Name on page 162 for details.

• The driver has been enhanced with the new Keep Connection Active (KeepConnectionActive) and Socket
Idle Time (SocketIdleTimeCheckInterval) connection options. Together, these options provide you with
a method to keep active idle connections to Azure SQL Database, Azure Synapse Analytics through
Azure SQL Gateway, or to databases that enforce timeouts for inactivity. See Keep Connection Active
on page 166 and Socket Idle Time on page 185 for details.

• The driver supports inserts into IDENTITY columns in data replication scenarios. The Enable Replication
User connection option (EnableReplicationUser) or the SQL_COPT_REPLICATION_USER connection
attribute (numeric value 1080) can be used to allow inserts into IDENTITY columns defined as NOT
FOR REPLICATION. For details, see Inserts on IDENTITY columns in data replication scenarios on
page 128 and Enable Replication User on page 155.

• The driver has been enhanced to support distributed transactions. It implements the XA interface to
enable support for distributed transactions. For details, see XA interface support on page 122.

• The driver is enhanced to support access token authentication programmatically with the use of a
pre-connection SQL_COPT_SS_ACCESS_TOKEN attribute. See Access token authentication on page 91
for details.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.210

Chapter 1: Welcome to the Progress DataDirect for ODBC for SQL Server Wire Protocol Driver

https://www.progress.com/jdbc/release-history/
https://www.progress.com/supported-configurations/datadirect
https://www.progress.com/matrices/datadirect

• The drivers using base version B0649 and later have been enhanced to include timestamp in the internal
packet logs by default. If you want to disable the timestamp logging in packet logs, set
PacketLoggingOptions=1. The internal packet logging is not enabled by default. To enable it, set
EnablePacketLogging=1.

• The Driver Manager for UNIX/Linux has been enhanced to support setting the Unicode encoding type
for applications on a per connection basis. By passing a value for the SQL_ATTR_APP_UNICODE_TYPE
attribute using SQLSetConnectAttr, your application can specify the encoding at connection. This allows
your application to pass both UTF-8 and UTF-16 encoded strings with a single environment handle.

The valid values for the SQL_ATTR_APP_UNICODE_TYPE attribute are SQL_DD_CP_UTF8 and
SQL_DD_CP_UTF16. The default value is SQL_DD_CP_UTF8.

Refer to the "Driver Manager and Unicode encoding on UNIX/Linux" in Progress DataDirect for ODBC
Drivers Reference for details.

This enhancement is available in build 08.02.0449 of the driver manager.

• The new AllowedOpenSSLVersions option allows you to determine which version of the OpenSSL library
file the driver uses for data encryption. See AllowedOpenSSLVersions on page 135 or Designating an
OpenSSL Library on page 100 for details.

• The driver has been enhanced to support the Always Encrypted feature. Beginning with SQL Server
2016, Azure SQL and SQL Server databases support Always Encrypted, which allows sensitive data to
be stored on the server in an encrypted state such that the data can only be decrypted by an authorized
application. The following are highlights of this enhancement:

• The driver detects all supported native data types in encrypted columns and transparently encrypts
values bound to SQL parameters or decrypts values returned in results and output parameters.

• The driver supports configurable caching of column encryption keys for improved performance.

• The driver supports using Windows Certificate Store and Azure Key Vault as keystore providers.

You can enable support for Always Encrypted using the new Column Encryption, Key Store Principal,
Key Store Secret, and Key Cache Time To Live connection options. See Always Encrypted on page 104
for details.

• Changed Behavior

• The driver has been updated to return the server name to which you are connected for the value of
SQL_SERVER_NAME when executing SQLGetInfo. In earlier versions of the driver, the value returned
for SQL_SERVER_NAME would be the setting of the Host Name (HostName) connection option. The
driver will now return the server name string that it receives from the server when connecting to the
database as the value for SQLGetInfo(SQL_SERVER_NAME).

• The following Windows platforms have reached the end of their product lifecycle and are no longer
supported by the driver:

• Windows 8.0 (versions 8.1 and higher are still supported)

• Windows Vista (all versions)

• Windows XP (all versions)

• Windows Server 2003 (all versions)

Changes for 8.0.2 GA
• Platform Certifications

• Certified with Red Hat Enterprise 7.3

11The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

What's new in this release?

• Certified with Debian 7.11, 8.5

• Certified with Ubuntu 14.04, 16.04

• Certified with Windows Server 2016

• Data Source Version Certifications

• Certified with Microsoft Azure Synapse Analytics 12.00

• Certified with Microsoft Analytics Platform System 10.00

• Certified with Microsoft SQL Server 2016, 2017

• Driver Enhancements

• The driver has been enhanced to transparently connect to Microsoft Azure Synapse Analytics and
Microsoft Analytics Platform System data sources. See Support for Azure Synapse Analytics and Analytics
Platform System on page 126 for more information about supported features and functionality.

• The driver has been enhanced to support connecting to a proxy server through an HTTP connection.
HTTP proxy support is configurable with five new connection options. See Proxy Host on page 179, Proxy
Mode on page 180, Proxy Password on page 181, Proxy Port on page 181, and Proxy User on page 182
for details.

• The new Enable Server Side Cursors connection option allows you to determine which server-side
cursors are enabled for the data source. See Enable Server Side Cursors on page 155 for details.

• The driver is enhanced to support Azure Active Directory (Azure AD) authentication. Azure AD
authentication is an alternative to SQL Server Authentication for Azure SQL Database that allows you
to centrally manage identities of database users. See Azure Active Directory authentication on page 92
for details.

• The driver has been enhanced to support Always On Availability Groups. Introduced in SQL Server
2012, Always On Availability Groups is a replica-database environment that provides a high-level of data
availability, protection, and recovery. To support this enhancement, the following updates have been
made to the driver:

• The new Multi-Subnet Failover option allows the driver to attempt parallel connections to all the IP
addresses associated with an availability group when the primary listener is unavailable. This offers
improved response time over traditional failover, which attempts connections to alternate servers one
at a time. To support high availability with Always On, this option must be enabled.

• The Host Name option has been updated to support the virtual network name (VNN) of the availability
group listener as a valid value. To connect to an Always On Availability group, you must specify the
VNN using this option.

• The new Application Intent option allows you to control whether the driver requests read-only routing,
thereby improving efficiency by reducing the workload on read-write nodes.

See Multi-Subnet Failover on page 174, Host Name on page 162, and Application Intent on page 138 for
details.

• The driver and Driver Manager have been enhanced to support UTF-8 encoding in the odbc.ini and
odbcinst.ini files.

Refer to the "Character encoding in the odbc.ini and odbcinst.ini files" in Progress DataDirect for ODBC
Drivers Reference for details.

• Changed Behavior

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.212

Chapter 1: Welcome to the Progress DataDirect for ODBC for SQL Server Wire Protocol Driver

The default value for Crypto Protocol Version has been updated to TLSv1.2,TLSv1.1,TLSv1. This
change improves the security of the driver by employing only the most secure cryptographic protocols
as the default behavior. See Crypto Protocol Version on page 149 for details.

•

Driver requirements
The driver has no client requirements.

The SQL Server Wire Protocol driver connects via TCP/IP. TCP/IP connections must be configured on the
Windows server on which the Microsoft SQL Server database resides.

ODBC compliance
The SQL Server Wire Protocol driver is compliant with the Open Database Connectivity (ODBC) specification.
The driver supports ODBC conformance level 1.

In addition, the following functions are supported:

• SQLForeignKeys

• SQLTablePrivileges

• SQLDescribeParam

• SQLColumnPrivileges

Refer to "ODBC API and scalar functions" in the Progress DataDirect for ODBCDrivers Reference for additional
information.

Version string information
The driver has a version string of the format:

XX.YY.ZZZZ(BAAAA, UBBBB)

or

XX.YY.ZZZZ(bAAAA, uBBBB)

The Driver Manager on UNIX and Linux has a version string of the format:

XX.YY.ZZZZ(UBBBB)

The component for the Unicode conversion tables (ICU) has a version string of the format:

XX.YY.ZZZZ

where:

XX is the major version of the product.

YY is the minor version of the product.

13The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Driver requirements

ZZZZ is the build number of the driver or ICU component.

AAAA is the build number of the driver's bas component.

BBBB is the build number of the driver's utl component.

For example:

08.02.0002 (b0001, u0002)
|__| |___| |___|

Driver Bas Utl

On Windows, you can check the version string through the properties of the driver DLL. Right-click the
driver DLL and select Properties. The Properties dialog box appears. On the Version tab, click File Version
in the Other version information list box.

You can always check the version string of a driver on Windows by looking at the About tab of the driver’s
Setup dialog.

On UNIX and Linux, you can check the version string by using the test loading tool shipped with
the product. This tool, ivtestlib for 32-bit drives and ddtestlib for 64-bit drivers, is located in
install_directory/bin.

The syntax for the tool is:

ivtestlib shared_object

or

ddtestlib shared_object

For example, for the 32-bit driver on Linux:

ivtestlib ivsqls28.so

returns:

08.02.0001 (B0002, U0001)

For example, for the Driver Manager on Linux:

ivtestlib libodbc.so

returns:

08.02.0001 (U0001)

For example, for the 64-bit Driver Manager on Linux:

ddtestlib libodbc.so

returns:

08.02.0001 (U0001)

For example, for 32-bit ICU component on Linux:

ivtestlib libivicu28.so
08.02.0001

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.214

Chapter 1: Welcome to the Progress DataDirect for ODBC for SQL Server Wire Protocol Driver

Note: On AIX, Linux, and Solaris, the full path to the driver does not have to be specified for the test loading
tool. The HP-UX version of the tool, however, requires the full path.

getFileVersionString function
Version string information can also be obtained programmatically through the function getFileVersionString.
This function can be used when the application is not directly calling ODBC functions.

This function is defined as follows and is located in the driver's shared object:

const unsigned char* getFileVersionString();

This function is prototyped in the qesqlext.h file shipped with the product.

Support for multiple environments
Your Progress DataDirect driver is ODBC-compliant for Windows, UNIX, and Linux operating systems. This
section explains the environment-specific differences when using the database drivers in your operating
environment.

The sections "Support for Windows Environments" and "Support for UNIX and Linux Environments" contain
information specific to your operating environment.

The following sections refer to threading models.

Refer to "Threading" in the Progress DataDirect for ODBC Drivers Reference for more information.

Note: Support for operating environments and database versions are continually being added. For the latest
information about supported platforms and databases, refer to the Progress DataDirect certification matrices
page at https://www.progress.com/matrices/datadirect.

See also
Support for Windows environments on page 15
Support for UNIX and Linux environments on page 17

Support for Windows environments
The following are requirements for the 32- and 64-bit drivers on Windows operating systems.

32-bit driver requirements
• All required network software that is supplied by your database system vendors must be 32-bit compliant.

• If your application was built with 32-bit system libraries, you must use 32-bit driver. If your application was
built with 64-bit system libraries, you must use 64-bit driver (see 64-bit requirements). The database to
which you are connecting can be either 32-bit or 64-bit enabled.

• The following processors are supported:

15The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Support for multiple environments

https://www.progress.com/matrices/datadirect

x86: Intel•
• x64: Intel and AMD

• The following operating systems are supported for your Progress DataDirect for ODBC driver. All editions are
supported unless otherwise noted.

• Windows Server 2016

• Windows Server 2012

• Windows Server 2008

• Windows 10

• Windows 8.1

• Windows 7

• An application that is compatible with components that were built using Microsoft Visual Studio 2015 compiler
and the standard Win32 threading model.

• Youmust have ODBC header files to compile your application. For example, Microsoft Visual Studio includes
these files.

See also
64-bit driver requirements on page 16

64-bit driver requirements
• All required network software that is supplied by your database system vendors must be 64-bit compliant.

• The following processors are supported:

• Intel

• AMD

• The following operating systems are supported for your 64-bit driver. All editions are supported unless
otherwise noted.

• Windows Server 2016

• Windows Server 2012

• Windows Server 2008

• Windows 10

• Windows 8.1

• Windows 7

• An application that is compatible with components that were built using Microsoft C/C++ Optimizing Compiler
Version 14.00.40310.41 and the standard Windows 64 threading model.

• Youmust have ODBC header files to compile your application. For example, Microsoft Visual Studio includes
these files.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.216

Chapter 1: Welcome to the Progress DataDirect for ODBC for SQL Server Wire Protocol Driver

Setup of the driver
The driver must be configured before it can be used. See "Getting started" for information about using the
Windows ODBC Administrator. See "Configuring and connecting to data sources" for details about driver
configuration.

See also
Getting started on page 27
Configuring and connecting to data sources on page 40

Driver file names for Windows
The prefix for all 32-bit driver file names is iv. The prefix for all 64-bit driver file names is dd. The file extension
is .dll, which indicates dynamic link libraries. For example, the 32-bit SQL Server Wire Protocol driver file
name is ivsqlsnn.dll, where nn is the revision number of the driver.

For the 8.0 version of the 32-bit driver, the file name is:

ivsqls28.dll

For the 8.0 version of the 64-bit driver, the file name is:

ddsqls28.dll

Refer to the readme file shipped with the product for a complete list of installed files.

Support for UNIX and Linux environments

The following are requirements for the 32- and 64-bit drivers on UNIX/Linux operating systems.

32-bit driver requirements for UNIX/Linux
• All required network software that is supplied by your database system vendors must be 32-bit compliant.

• If your application was built with 32-bit system libraries, you must use 32-bit drivers. If your application was
built with 64-bit system libraries, you must use 64-bit drivers (see "64-bit driver requirements for UNIX/Linux").
The database to which you are connecting can be either 32-bit or 64-bit enabled.

AIX
• IBM POWER processor

• AIX 5L operating system, version 5.3 fixpack 5 and higher, 6.1, and 7.1

• An application compatible with components that were built using Visual Age C++ 6.0.0.0 and the AIX native
threading model

HP-UX
• The following processors are supported:

• PA-RISC

• Intel Itanium II (IPF)

17The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Support for multiple environments

• The following operating systems are supported:

• For PA-RISC: HP-UX 11i Versions 2 and 3 (B.11.23 and B.11.3x)

• For IPF: HP-UX IPF 11i Versions 2 and 3 (B.11.23 and B.11.3x)

• For PA-RISC: An application compatible with components that were built using HP aC++ 3.60 and the
HP-UX 11 native (kernel) threading model (posix draft 10 threads).

All of the standard 32-bit UNIX drivers are supported on HP PA-RISC.

• For IPF: An application compatible with components that were built using HP aC++ 5.36 and the HP-UX
11 native (kernel) threading model (posix draft 10 threads)

Linux
• The following processors are supported:

• x86: Intel

• x64: Intel and AMD

• The following operating systems are supported:

• CentOS Linux 4.x, 5.x, 6.x, and 7.x

• Debian Linux 7.11, 8.5

• Oracle Linux 4.x, 5.x, 6.x, and 7.x

• Red Hat Enterprise Linux 4.x, 5.x, 6.x, and 7.x

• SUSE Linux Enterprise Server 10.x, and 11.x

• Ubuntu Linux 14.04, 16.04

• An application compatible with components that were built using g++ GNU project C++ Compiler version
3.4.6 and the Linux native pthread threading model (Linuxthreads).

Oracle Solaris
• The following processors are supported:

• Oracle SPARC

• x86: Intel

• x64: Intel and AMD

• The following operating systems are supported:

• For Oracle SPARC: Oracle Solaris 8, 9, 10, 11.x

• For x86/x64: Oracle Solaris 10, Oracle Solaris 11.x

• For Oracle SPARC: An application compatible with components that were built using Sun Studio 11, C++
compiler version 5.8 and the Solaris native (kernel) threading model.

• For x86/x64: An application compatible with components that were built using Oracle C++ 5.8 and the Solaris
native (kernel) threading model

Refer to "Threading" in the Progress DataDirect for ODBC Drivers Reference for more information.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.218

Chapter 1: Welcome to the Progress DataDirect for ODBC for SQL Server Wire Protocol Driver

See also
64-bit drivers requirements for UNIX/Linux on page 19

64-bit drivers requirements for UNIX/Linux
All required network software that is supplied by your database system vendors must be 64-bit compliant.

AIX
• IBM POWER Processor

• AIX 5L operating system, version version 5.3 fixpack 5 and higher, 6.1, and 7.1

• An application compatible with components that were built using Visual Age C++ version 6.0.0.0 and the
AIX native threading model

HP-UX
• HP-UX IPF 11i operating system, Versions 2 and 3 (B.11.23 and B.11.31)

• HP aC++ v. 5.36 and the HP-UX 11 native (kernel) threading model (posix draft 10 threads)

Linux
• Intel Itanium II (IPF)

• Intel and AMD processors

• The following operating systems are supported:

• For Intel Itanium II (IPF):

• CentOS Linux 4.x, 5.x, 6.x, and 7.x

• Oracle Linux 4.x, 5.x, 6.x, and 7.x

• Red Hat Enterprise Linux AS, ES, and WS version 4.x, 5.x, 6.x, and 7.x

• For x64:

• CentOS Linux 4.x, 5.x, 6.x, and 7.x

• Debian Linux 7.11 and 8.5

• Oracle Linux 4.x, 5.x, 6.x, and 7.x

• Red Hat Enterprise Linux AS, ES, and WS version 4.x, 5.x, 6.x, and 7.x

• SUSE Linux Enterprise Server 10.x, and 11.x

• Ubuntu Linux 14.04 and 16.04

• For Itanium II: an application compatible with components that were built using g++ GNU project C++
Compiler version 3.3.2 and the Linux native pthread threading model (Linuxthreads)

• For x64: an application compatible with components that were built using g++ GNU project C++ Compiler
version 3.4 and the Linux native pthread threading model (Linuxthreads)

Oracle Solaris
• The following processors are supported:

19The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Support for multiple environments

Oracle SPARC•
• x64: Intel and AMD

• The following operating systems are supported:

• For Oracle SPARC: Oracle Solaris 8, 9, 10, and 11.x

• For x64: Oracle Solaris 10 and Oracle Solaris 11.x Express

• For Oracle SPARC: An application compatible with components that were built using Sun Studio 11, C++
compiler version 5.8 and the Solaris native (kernel) threading model

• For x64: An application compatible with components that were built using Oracle C++ Compiler version 5.8
and the Solaris native (kernel) threading model

Refer to "Threading" in the Progress DataDirect for ODBC Drivers Reference for more information.

AIX
If you are building 64-bit binaries, you must pass the define ODBC64. The example Application provides a
demonstration of this. See the installed file example.txt for details.

You must also include the correct compiler switches if you are building 64-bit binaries. For instance, to build
example, you would use:

xlC_r –DODBC64 -q64 -qlonglong -qlongdouble -qvftable -o example
-I../include example.c -L../lib -lc_r -lC_r -lodbc

HP-UX 11 aCC
The ODBC drivers require certain runtime library patches. The patch numbers are listed in the readme file for
your product. HP-UX patches are publicly available from the HP Web site http://www.hp.com.

HP updates the patch database regularly; therefore, the patch numbers in the readme file may be superseded
by newer versions. If you search for the specified patch on an HP site and receive a message that the patch
has been superseded, download and install the replacement patch.

If you are building 64-bit binaries, you must pass the define ODBC64. The example Application provides a
demonstration of this. See the installed file example.txt for details. You must also include the +DD64 compiler
switch if you are building 64-bit binaries. For instance, to build example, you would use:

aCC -Wl,+s +DD64 -DODBC64 -o example -I../include example.c -L../lib -lodbc

Linux
If you are building 64-bit binaries, you must pass the define ODBC64. The example Application provides a
demonstration of this. Refer to the installed file example.txt for details.

You must also include the correct compiler switches if you are building 64-bit binaries. For instance, to build
example, you would use:

g++ -o example -DODBC64 -I../include example.c -L../lib -lodbc -lodbcinst -lc

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.220

Chapter 1: Welcome to the Progress DataDirect for ODBC for SQL Server Wire Protocol Driver

http://www.hp.com

Oracle Solaris
If you are building 64-bit binaries, you must pass the define ODBC64. The example Application provides a
demonstration of this. See the installed file example.txt for details.

You must also include the -xarch=v9 compiler switch if you are building 64-bit binaries. For instance, to build
example, you would use:

CC -mt –DODBC64 -xarch=v9 -o example -I../include example.c -L../lib -lodbc –lCrun

Setup of the environment and the drivers
On UNIX and Linux, several environment variables and the system information file must be configured before
the drivers can be used. See the following topics for additional information:

• "Configuring and Connecting on UNIX and Linux" contains a brief description of these variables.

• "Configuring and Connecting to Data Sources" provides details about driver configuration.

• "Configuring the Product on UNIX/Linux" provides complete information about using the drivers on UNIX
and Linux.

See also
Configuring and connecting on UNIX and Linux on page 29
Configuring and connecting to data sources on page 40
Configuring the product on UNIX/Linux on page 40

Driver file names for UNIX/Linux
The drivers are ODBC API-compliant dynamic link libraries, referred to in UNIX and Linux as shared objects.
The prefix for all 32-bit driver file names is iv. The prefix for all 64-bit driver file names is dd. The driver file
names are lowercase and the extension is .so, the standard form for a shared object. For example, the 32-bit
driver file name is ivsqlsnn.so, where nn is the revision number of the driver. However, for the driver on
HP-UX PA-RISC only, the extension is .sl. For example, ivsqlsnn.sl.

For the 8.0 version of the 32-bit driver, the file name is:

ivsqls28.so

For the 8.0 version of the 64-bit driver, the file name is:

ddsqls28.so

Refer to the readme file for a complete list of installed files.

Data types
The following table shows how the Microsoft SQL Server and Windows Azure SQL Database data types are
mapped to the standard ODBC data types. "Unicode support" lists Microsoft SQL Server to Unicode data type
mappings.

21The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Data types

Table 1: Microsoft SQL Server Data Types

ODBCSQL Server

SQL_BINARYbinary

SQL_BIGINTbigint

SQL_BIGINTbigint identity

SQL_BITbit

SQL_CHARchar

SQL_TYPE_DATEdate1

SQL_TYPE_TIMESTAMPdatetime

SQL_TYPE_TIMESTAMPdatetime21

SQL_DECIMALdecimal

SQL_DECIMALdecimal() identity

SQL_FLOATfloat

SQL_LONGVARBINARYimage

SQL_INTEGERint

SQL_INTEGERint identity

SQL_DECIMALmoney

SQL_NUMERICnumeric

SQL_NUMERICnumeric() identity

SQL_REALreal

SQL_TYPE_TIMESTAMPsmalldatetime

SQL_SMALLINTsmallint

SQL_SMALLINTsmallint identity

SQL_DECIMALsmallmoney

SQL_LONGVARCHARtext

SQL_TYPE_TIMESTAMPtime1, 2

1 Supported only on Microsoft SQL Server 2008 and higher.
2 Time mapping changes based on the setting of the Fetch TWFS as Time option.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.222

Chapter 1: Welcome to the Progress DataDirect for ODBC for SQL Server Wire Protocol Driver

ODBCSQL Server

SQL_BINARYtimestamp

SQL_TINYINTtinyint

SQL_TINYINTtinyint identity

SQL_GUIDuniqueidentifier

SQL_VARBINARYvarbinary

SQL_LONGVARBINARYvarbinary(max)3

SQL_VARCHARvarchar

SQL_LONGVARCHARvarchar(max)3

See also
Unicode support on page 23
Retrieving data type information on page 24

Unicode support
The SQL Server Wire Protocol driver maps the Microsoft SQL Server and Windows Azure SQL Database data
types to Unicode data types as shown in the following table:

Table 2: Mapping Microsoft SQL Server andWindows Azure SQL Database Data Types to Unicode Data
Types

Mapped to. . .SQL Server Data Type

SQL_WVARCHARdatetimeoffset4, 5

SQL_WCHARnchar

SQL_WLONGVARCHARntext

SQL_WVARCHARnvarchar

SQL_WLONGVARCHARnvarchar(max)6

SQL_WVARCHARsysname

SQL_WLONGVARCHARxml6

3 Supported only on Microsoft SQL Server 2005 and higher.
4 Supported only for Microsoft SQL Server 2008 and higher, and Windows Azure SQL Database.
5 Datetimeoffset mapping changes based on the setting of the Fetch TSWTZ as Timestamp option.
6 nvarchar(max) and xml are supported for Microsoft SQL Server 2005 and higher.

23The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Data types

The driver supports the Unicode ODBCW (Wide) function calls, such as SQLConnectW. This allows the Driver
Manager to transmit these calls directly to the driver. Otherwise, the Driver Manager would incur the additional
overhead of converting the W calls to ANSI function calls, and vice versa.

See "UTF-16 applications on UNIX and Linux" for related details.

Also, refer to "Internationalization, localization, and Unicode" in the Progress DataDirect for ODBC Drivers
Reference for a more detailed explanation of Unicode.

See also
UTF-16 applications on UNIX and Linux on page 49

Using the XML data type
By default, Microsoft SQL Server returns XML data to the driver encoded as UTF-8. To avoid data loss, an
application must bind XML data as SQL_C_WCHAR. The driver then returns the data as either UTF-8 or
UTF-16, depending on platform and application settings. If the application binds XML data as SQL_C_CHAR,
the driver converts it to the client character encoding, possibly causing data loss or corruption. To prevent any
conversion of XML data, the application must set the attribute "XML describe type" to SQL_LONGVARBINARY
(-10) and bind the data as SQL_C_BINARY.

See also
XML Describe Type on page 192

Retrieving data type information
At times, you might need to get information about the data types that are supported by the data source, for
example, precision and scale. You can use the ODBC function SQLGetTypeInfo to do this.

On Windows, you can use ODBC Test to call SQLGetTypeInfo against the ODBC data source to return the
data type information.

Refer to "Diagnostic tools" in the Progress DataDirect for ODBC Drivers Reference for details about ODBC
Test.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.224

Chapter 1: Welcome to the Progress DataDirect for ODBC for SQL Server Wire Protocol Driver

On all platforms, an application can call SQLGetTypeInfo. Here is an example of a C function that calls
SQLGetTypeInfo and retrieves the information in the form of a SQL result set.

void ODBC_GetTypeInfo(SQLHANDLE hstmt, SQLSMALLINT dataType)
{

RETCODE rc;

// There are 19 columns returned by SQLGetTypeInfo.
// This example displays the first 3.
// Check the ODBC 3.x specification for more information.
// Variables to hold the data from each column

char typeName[30];
short sqlDataType;
unsigned int columnSize;

SQLLEN strlenTypeName,
strlenSqlDataType,
strlenColumnSize;

rc = SQLGetTypeInfo(hstmt, dataType);
if (rc == SQL_SUCCESS) {

// Bind the columns returned by the SQLGetTypeInfo result set.
rc = SQLBindCol(hstmt, 1, SQL_C_CHAR, &typeName,

(SDWORD)sizeof(typeName), &strlenTypeName);
rc = SQLBindCol(hstmt, 2, SQL_C_SHORT, &sqlDataType,

(SDWORD)sizeof(sqlDataType), &strlenSqlDataType);
rc = SQLBindCol(hstmt, 3, SQL_C_LONG, &columnSize,

(SDWORD)sizeof(columnSize), &strlenColumnSize);

// Print column headings
printf ("TypeName DataType ColumnSize\n");
printf ("-------------------- ---------- ----------\n");

do {

// Fetch the results from executing SQLGetTypeInfo
rc = SQLFetch(hstmt);
if (rc == SQL_ERROR) {

// Procedure to retrieve errors from the SQLGetTypeInfo function
ODBC_GetDiagRec(SQL_HANDLE_STMT, hstmt);
break;

}

// Print the results
if ((rc == SQL_SUCCESS) || (rc == SQL_SUCCESS_WITH_INFO)) {

printf ("%-30s %10i %10u\n", typeName, sqlDataType, columnSize);
}

} while (rc != SQL_NO_DATA);
}

}

Troubleshooting
The Progress DataDirect for ODBCDrivers Reference provides information on troubleshooting problems should
they occur. Refer to Troubleshooting for details.

25The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Troubleshooting

../../datadirect-odbc-reference/page/Troubleshooting.html

Contacting Technical Support
Progress DataDirect offers a variety of options to meet your support needs. Please visit our Web site for more
details and for contact information:

https://www.progress.com/support

The Progress DataDirect Web site provides the latest support information through our global service network.
The SupportLink program provides access to support contact details, tools, patches, and valuable information,
including a list of FAQs for each product. In addition, you can search our Knowledgebase for technical bulletins
and other information.

When you contact us for assistance, please provide the following information:

• Your number or the serial number that corresponds to the product for which you are seeking support, or a
case number if you have been provided one for your issue. If you do not have a SupportLink contract, the
SupportLink representative assisting you will connect you with our Sales team.

• Your name, phone number, email address, and organization. For a first-time call, you may be asked for full
information, including location.

• The Progress DataDirect product and the version that you are using.

• The type and version of the operating system where you have installed your product.

• Any database, database version, third-party software, or other environment information required to understand
the problem.

• A brief description of the problem, including, but not limited to, any error messages you have received, what
steps you followed prior to the initial occurrence of the problem, any trace logs capturing the issue, and so
on. Depending on the complexity of the problem, you may be asked to submit an example or reproducible
application so that the issue can be re-created.

• A description of what you have attempted to resolve the issue. If you have researched your issue on Web
search engines, our Knowledgebase, or have tested additional configurations, applications, or other vendor
products, you will want to carefully note everything you have already attempted.

• A simple assessment of how the severity of the issue is impacting your organization.

January 2021, Release 8.0.2 for the Progress DataDirect for ODBC for SQL Server Wire Protocol Driver,
Version 0001

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.226

Chapter 1: Welcome to the Progress DataDirect for ODBC for SQL Server Wire Protocol Driver

https://www.progress.com/support

2
Getting started

This section provides basic information about configuring your driver immediately after installation, testing your
connection, and accessing your data with some commonly used third-party applications. To take full advantage
of the features of the driver, read "Using the driver".

Information that the driver needs to connect to a database is stored in a data source. The ODBC specification
describes three types of data sources: user data sources, system data sources (not a valid type on UNIX/Linux),
and file data sources. OnWindows, user and system data sources are stored in the registry of the local computer.
The difference is that only a specific user can access user data sources, whereas any user of the machine can
access system data sources. On Windows, UNIX, and Linux, file data sources, which are simply text files, can
be stored locally or on a network computer, and are accessible to other machines.

When you define and configure a data source, you store default connection values for the driver that are used
each time you connect to a particular database. You can change these defaults by modifying the data source.

For details, see the following topics:

• Configuring and connecting on Windows

• Configuring and connecting on UNIX and Linux

Configuring and connecting on Windows

27The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

The following basic information enables you to configure a data source and test connect with a driver immediately
after installation. On Windows, you can configure and modify data sources through the ODBC Administrator
using a driver Setup dialog box. Default connection values are specified through the options on the tabs of the
Setup dialog box and are stored either as a user or system data source in the Windows Registry, or as a file
data source in a specified location.

Configuring a data source
To configure a data source:

1. From the Progress DataDirect program group, start the ODBC Administrator and click either the User DSN,
System DSN, or File DSN tab to display a list of data sources.

• User DSN: If you installed a default DataDirect ODBC user data source as part of the installation, select
the appropriate data source name and click Configure to display the driver Setup dialog box.

If you are configuring a new user data source, click Add to display a list of installed drivers. Select the
appropriate driver and click Finish to display the driver Setup dialog box.

• System DSN: To configure a new system data source, click Add to display a list of installed drivers.
Select the appropriate driver and click Finish to display the driver Setup dialog box.

• File DSN: To configure a new file data source, click Add to display a list of installed drivers. Select the
driver and click Advanced to specify attributes; otherwise, click Next to proceed. Specify a name for
the data source and click Next. Verify the data source information; then, click Finish to display the driver
Setup dialog box.

The General tab of the Setup dialog box appears by default.

Note: The General tab displays only fields that are required for creating a data source. The fields on all
other tabs are optional, unless noted otherwise in this book.

2. On the General tab, provide the following information; then, click Apply.
Host Name: Type either the name or the IP address of the server to which you want to connect:

• If your network supports named servers, you can specify an address as: server_name. For example,
you can enter SSserver.

• You can also specify a named instance of Microsoft SQL Server. Specify this address as:
server_name\instance_name. If only a server name is specified with no instance name, the driver
uses the default named instance on the server.

Port Number: Type the port number of the server listener. The default port number is 1433.

Database: Type the name of the database to which you want to connect by default.

Testing the connection
To test the connection:

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.228

Chapter 2: Getting started

1. After you have configured the data source, you can click Test Connect on the Setup dialog box to attempt
to connect to the data source using the connection options specified in the dialog box. The driver returns a
message indicating success or failure. A logon dialog box appears as described in "Using a logon dialog
box."

2. Supply the requested information in the logon dialog box and click OK. Note that the information you enter
in the logon dialog box during a test connect is not saved.

• If the driver can connect, it releases the connection and displays a Connection Establishedmessage.
Click OK.

• If the driver cannot connect because of an incorrect environment or connection value, it displays an
appropriate error message. Click OK.

3. On the driver Setup dialog box, click OK. The values you have specified are saved and are the defaults
used when you connect to the data source. You can change these defaults by using the previously described
procedure to modify your data source. You can override these defaults by connecting to the data source
using a connection string with alternate values. See "Using a connection string" for information about using
connection strings.

See also
Using a logon dialog box on page 77
Using a connection string on page 77

Configuring and connecting on UNIX and Linux

The following basic information enables you to configure a data source and test connect with a driver immediately
after installation. See "Configuring and connecting to data sources" for detailed information about configuring
the UNIX/Linux environment and data sources.

Note: In the following examples, xx in a driver filename represents the driver level number.

See also
Configuring and connecting to data sources on page 40

Environment configuration
To configure the environment:

1. Check your permissions: You must log in as a user with full r/w/x permissions recursively on the entire
product installation directory.

2. From your login shell, determine which shell you are running by executing:

echo $SHELL

29The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Configuring and connecting on UNIX and Linux

3. Run one of the following product setup scripts from the installation directory to set variables: odbc.sh or
odbc.csh. For Korn, Bourne, and equivalent shells, execute odbc.sh. For a C shell, execute odbc.csh.
After running the setup script, execute:

env

to verify that the installation_directory/lib directory has been added to your shared library path.

4. Set the ODBCINI environment variable. The variable must point to the path from the root directory to the
system information file where your data source resides. The system information file can have any name,
but the product is installed with a default file called odbc.ini in the product installation directory. For
example, if you use an installation directory of /opt/odbc and the default system information file, from the
Korn or Bourne shell, you would enter:

ODBCINI=/opt/odbc/odbc.ini; export ODBCINI

From the C shell, you would enter:

setenv ODBCINI /opt/odbc/odbc.ini

Test loading the driver
The ivtestlib (32-bit drivers) and ddtestlib (64-bit drivers) test loading tools are provided to test load drivers and
help diagnose configuration problems in the UNIX and Linux environments, such as environment variables not
correctly set or missing database client components. This tool is installed in the /bin subdirectory in the product
installation directory. It attempts to load a specified ODBC driver and prints out all available error information
if the load fails.

For example, if the drivers are installed in /opt/odbc/lib, the following command attempts to load the 32-bit
driver, where xx represents the version number of the driver:

ivtestlib /opt/odbc/lib/ivsqlsxx.so

Note: On Solaris, AIX, and Linux, the full path to the driver does not have to be specified for the tool. The
HP-UX version, however, requires the full path.

If the load is successful, the tool returns a success message along with the version string of the driver. If the
driver cannot be loaded, the tool returns an error message explaining why.

Configuring a data source in the system information file
The default odbc.ini file installed in the installation directory is a template in which you create data source
definitions. You enter your site-specific database connection information using a text editor. Each data source
definition must include the keyword Driver=, which is the full path to the driver.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.230

Chapter 2: Getting started

The following examples show the minimum connection string options that must be set to complete a test
connection, where xx represents iv for 32-bit or dd for 64-bit drivers, yy represents the driver level number,
and zz represents the extension. The values for the options are samples and are not necessarily the ones you
would use.

[ODBC Data Sources]
SQL Server Wire Protocol=DataDirect 8.0 SQL Server Wire Protocol

[SQL Server Wire Protocol]
Driver=ODBCHOME/lib/xxsqlsyy.zz
Database=default
HostName=SSServer
PortNumber=1433

Connection Option Descriptions:

Database: The name of the database to which you want to connect by default.

HostName: Either the name or the IP address of the server to which you want to connect:

• If your network supports named servers, you can specify an address as: server_name. For example, you
can enter SSserver.

• If your network supports named instances of Microsoft SQL Server, you can specify this address as:
server_name\instance_name. If only a server name is specified with no instance name, the driver uses
the default named instance on the server.

PortNumber: The port number of the server listener. The default is 1433.

Testing the connection
The driver installation includes an ODBC application called example that can be used to connect to a data
source and execute SQL. The application is located in the installation_directory/samples/example
directory.

To run the program after setting up a data source in the odbc.ini, enter example and follow the prompts to
enter your data source name, user name, and password. If successful, a SQL> prompt appears and you can
type in SQL statements such as SELECT * FROM table. If example is unable to connect, the appropriate
error message is returned.

31The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Configuring and connecting on UNIX and Linux

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.232

Chapter 2: Getting started

3
Tutorials

The following sections guide you through using the driver to access your data with some common third-party
applications.

For details, see the following topics:

• Accessing data in Microsoft Excel (Windows only)

• Accessing data in Microsoft Excel from the Query Wizard (Windows only)

Accessing data in Microsoft Excel (Windows only)
After you have configured your data source, you can use the driver to access your data with Microsoft Excel
from the Data Connection Wizard. Using the driver with Excel provides improved performance when retrieving
data, while leveraging the driver's relational-mapping tools.

To use the driver to access data with Excel from the Data Connection Wizard:

1. Open your workbook in Excel.

2. From the Data menu, select Get Data>From Other Sources>From ODBC.

3. The From ODBC dialog appears.

33The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Select your data source from the Data Source Name (DSN) drop down; then, click OK.

4. You are prompted for logon credentials for your data source:

• If your data source does not require logon credentials or if you prefer to specify your credentials using
a connection string, select Default or Custom from the menu on the left. Optionally, specify your
credential-related properties using a connection string in the provided field. Click Connect to proceed.

• If your data source uses Windows credentials, selectWindows from the menu; then, provide your
credentials. Optionally, specify a connection string with credential-related properties in the provided field.
Click Connect to proceed.

• If your data source uses credentials stored on the database, select Database; then, provide your user
name and password. Optionally, specify a connection string in the provided field. Click Connect to
proceed.

5. The Navigator window appears.

From the list, select the tables you want to access. A preview of your data will appear in the pane on the
right. Optionally, click Edit to modify the results using the Query Editor. Refer to the Microsoft Excel product
documentation for detailed information on using the Query Editor.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.234

Chapter 3: Tutorials

6. Load your data:

• Click Load to import your data into your work sheet. Skip to the end.
• Click Load>Load To to specify a location to import your data. Proceed to the next step.

7. The Import Data window appears.

Select the desired view and insertion point for the data. Click OK.

You have successfully accessed your data in Excel. For more information, refer to the Microsoft Excel product
documentation at: https://support.office.com/.

Accessing data in Microsoft Excel from the Query
Wizard (Windows only)

After you have configured your data source, you can use the driver to access your data with Microsoft Excel
from the Query Wizard. Using the driver with Excel provides improved performance when retrieving data, while
leveraging the driver's relational-mapping tools.

To use the driver to access data with Excel from the Query Wizard:

1. Open your workbook in Excel.

2. From the Data menu, select Get Data>From Other Sources>From Microsoft Query.

3. The Choose Data Source dialog appears.

35The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Accessing data in Microsoft Excel from the Query Wizard (Windows only)

https://support.office.com/

From the Databases list, select your data source. For example, MyDSN. Click OK.

4. The logon dialog appears pre-populated with the connection information you provided in your data source.
If required, type your password. Click OK to proceed.

Note: The logon dialog may reappear if Excel needs to access additional information from the data source.
If this occurs, re-enter your password; then, click OK to proceed to the next step.

5. The Query Wizard - Choose Columns window appears.

Choose the columns you want to import into your workbook. To add a column, select the column name in
Available tables and columns pane; then, click the > button. After you add the columns you want to include,
click Next to continue.

6. Optionally, filter your data using the drop-down menus; then, click Next.

7. Optionally, sort your data using the drop-down menus; then, click Next.

8. Select "Return Data to Microsoft Excel"; then, click Finish.

9. The Import Data window appears.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.236

Chapter 3: Tutorials

Select the desired view and insertion point for your data. Click OK.

You have successfully accessed your data in Excel using the Query Wizard. For more information, refer to the
Microsoft Excel product documentation at: https://support.office.com/.

37The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Accessing data in Microsoft Excel from the Query Wizard (Windows only)

https://support.office.com/

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.238

Chapter 3: Tutorials

4
Using the driver

This chapter guides you through the configuring and connecting to data sources. In addition, it explains how
to use the functionality supported by your driver.

For details, see the following topics:

• Configuring and connecting to data sources

• Using failover

• Using security

• Using DataDirect Connection Pooling

• Using DataDirect Bulk Load

• Using IP addresses

• XA interface support

• Binding parameter markers

• Isolation and lock levels supported

• Number of connections and statements supported

• SQL support

• Using arrays of parameters

• Support for Azure Synapse Analytics and Analytics Platform System

• Inserts on IDENTITY columns in data replication scenarios

39The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Configuring and connecting to data sources
After you install the driver, you configure data sources to connect to the database. See "Getting started" for an
explanation of different types of data sources. The data source contains connection options that allow you to
tune the driver for specific performance. If you want to use a data source but need to change some of its values,
you can either modify the data source or override its values at connection time through a connection string.

If you choose to use a connection string, you must use specific connection string attributes. See "Connection
option descriptions" for an alphabetical list of driver connection string attributes and their initial default values.

See also
Getting started on page 27
Connection option descriptions on page 129

Configuring the product on UNIX/Linux

This chapter contains specific information about using your driver in the UNIX and Linux environments.

See "Environment variables" for additional platform information.

See also
Environment variables on page 40

Environment variables
The first step in setting up and configuring the driver for use is to set several environment variables. The
following procedures require that you have the appropriate permissions to modify your environment and to
read, write, and execute various files. You must log in as a user with full r/w/x permissions recursively on the
entire Progress DataDirect for ODBC installation directory.

Library search path
The library search path variable can be set by executing the appropriate shell script located in the ODBC home
directory. From your login shell, determine which shell you are running by executing:

echo $SHELL

C shell login (and related shell) users must execute the following command before attempting to use
ODBC-enabled applications:

source ./odbc.csh

Bourne shell login (and related shell) users must initialize their environment as follows:

. ./odbc.sh

Executing these scripts sets the appropriate library search path environment variable:

• LD_LIBRARY_PATH on on HP-UX IPF, Linux, and Oracle Solaris

• LIBPATH on AIX

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.240

Chapter 4: Using the driver

• SHLIB_PATH on HP-UX PA-RISC

The library search path environment variable must be set so that the ODBC core components and drivers can
be located at the time of execution. After running the setup script, execute:

env

to verify that the installation_directory/lib directory has been added to your shared library path.

ODBCINI
Setup installs in the product installation directory a default system information file, named odbc.ini, that
contains data sources. See "Data source configuration on UNIX/Linux" for an explanation of the odbc.ini
file. The system administrator can choose to rename the file and/or move it to another location. In either case,
the environment variable ODBCINI must be set to point to the fully qualified path name of the odbc.ini file.

For example, to point to the location of the file for an installation on /opt/odbc in the C shell, you would set
this variable as follows:

setenv ODBCINI /opt/odbc/odbc.ini

In the Bourne or Korn shell, you would set it as:

ODBCINI=/opt/odbc/odbc.ini;export ODBCINI

As an alternative, you can choose to make the odbc.ini file a hidden file and not set the ODBCINI variable.
In this case, you would need to rename the file to .odbc.ini (to make it a hidden file) and move it to the
user’s $HOME directory.

The driver searches for the location of the odbc.ini file as follows:

1. The driver checks the ODBCINI variable

2. The driver checks $HOME for .odbc.ini

If the driver does not locate the system information file, it returns an error.

See also
Data source configuration on UNIX/Linux on page 43

ODBCINST
Setup installs in the product installation directory a default file, named odbcinst.ini, for use with DSN-less
connections. See "DSN-less connections" for an explanation of the odbcinst.ini file. The system administrator
can choose to rename the file or move it to another location. In either case, the environment variable ODBCINST
must be set to point to the fully qualified path name of the odbcinst.ini file.

For example, to point to the location of the file for an installation on /opt/odbc in the C shell, you would set
this variable as follows:

setenv ODBCINST /opt/odbc/odbcinst.ini

In the Bourne or Korn shell, you would set it as:

ODBCINST=/opt/odbc/odbcinst.ini;export ODBCINST

As an alternative, you can choose to make the odbcinst.ini file a hidden file and not set the ODBCINST variable.
In this case, you would need to rename the file to .odbcinst.ini (to make it a hidden file) and move it to
the user’s $HOME directory.

41The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Configuring and connecting to data sources

The driver searches for the location of the odbcinst.ini file as follows:

1. The driver checks the ODBCINST variable

2. The driver checks $HOME for .odbcinst.ini

If the driver does not locate the odbcinst.ini file, it returns an error.

See also
DSN-less connections on page 47

DD_INSTALLDIR
This variable provides the driver with the location of the product installation directory so that it can access
support files. DD_INSTALLDIR must be set to point to the fully qualified path name of the installation directory.

For example, to point to the location of the directory for an installation on /opt/odbc in the C shell, you would
set this variable as follows:

setenv DD_INSTALLDIR /opt/odbc

In the Bourne or Korn shell, you would set it as:

DD_INSTALLDIR=/opt/odbc;export DD_INSTALLDIR

The driver searches for the location of the installation directory as follows:

1. The driver checks the DD_INSTALLDIR variable

2. The driver checks the odbc.ini or the odbcinst.ini files for the InstallDir keyword (see "Configuration
through the system information (odbc.ini) file" for a description of the InstallDir keyword)

If the driver does not locate the installation directory, it returns an error.

The next step is to test load the driver.

See also
Configuration Through the System Information (odbc.ini) File on page 43

The test loading tool
The second step in preparing to use a driver is to test load it.

The ivtestlib (32-bit driver) and ddtestlib (64-bit driver) test loading tools are provided to test load drivers and
help diagnose configuration problems in the UNIX and Linux environments, such as environment variables not
correctly set or missing database client components. This tool is installed in the /bin subdirectory in the product
installation directory. It attempts to load a specified ODBC driver and prints out all available error information
if the load fails.

The test loading tool is provided to test load drivers and help diagnose configuration problems in the UNIX and
Linux environments, such as environment variables not correctly set or missing database client components.
This tool is installed in the bin subdirectory in the product installation directory. It attempts to load a specified
ODBC driver and prints out all available error information if the load fails.

For example, if the drivers are installed in /opt/odbc/lib, the following command attempts to load the 32-bit
driver on Solaris, where xx represents the version number of the driver:

ivtestlib /opt/odbc/lib/ivsqlsxx.so

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.242

Chapter 4: Using the driver

Note: On Solaris, AIX, and Linux, the full path to the driver does not have to be specified for the tool. The
HP-UX version, however, requires the full path.

If the load is successful, the tool returns a success message along with the version string of the driver. If the
driver cannot be loaded, the tool returns an error message explaining why.

See "Version string information" for details about version strings.

The next step is to configure a data source through the system information file.

See also
Version string information on page 13

Data source configuration on UNIX/Linux
In the UNIX and Linux environments, a system information file is used to store data source information. Setup
installs a default version of this file, called odbc.ini, in the product installation directory. This is a plain text
file that contains data source definitions.

Configuration Through the System Information (odbc.ini) File
To configure a data source manually, you edit the odbc.ini file with a text editor. The content of this file is
divided into three sections.

Note: The driver and driver manager support ASCII and UTF-8 encoding in the odbc.ini file.

Refer to the "Character encoding in the odbc.ini and odbcinst.ini files" in Progress DataDirect for ODBC Drivers
Reference for details.

At the beginning of the file is a section named [ODBC Data Sources] containing
data_source_name=installed-driver pairs, for example:

SQL Server=DataDirect 8.0 SQL Server Wire Protocol Driver.

The driver uses this section to match a data source to the appropriate installed driver.

The [ODBC Data Sources] section also includes data source definitions. The default odbc.ini contains a
data source definition for the driver. Each data source definition begins with a data source name in square
brackets, for example, [SQL Server]. The data source definitions contain connection string attribute=value
pairs with default values. You can modify these values as appropriate for your system. "Connection option
descriptions" describes these attributes. See "Sample default odbc.ini file" for sample data sources.

The second section of the file is named [ODBC File DSN] and includes one keyword:

[ODBC File DSN]
DefaultDSNDir=

This keyword defines the path of the default location for file data sources (see "File data sources").

Note: This section is not included in the default odbc.ini file that is installed by the product installer. You
must add this section manually.

The third section of the file is named [ODBC] and includes several keywords, for example:

[ODBC]
IANAAppCodePage=4

43The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Configuring and connecting to data sources

InstallDir=/opt/odbc
Trace=0
TraceFile=odbctrace.out
TraceDll=/opt/odbc/lib/ivtrc28.so
ODBCTraceMaxFileSize=102400
ODBCTraceMaxNumFiles=10

The IANAAppCodePage keyword defines the default value that the UNIX/Linux driver uses if individual data
sources have not specified a different value. See "IANAAppCodePage" in "Connection option descriptions" for
details. The default value is 4.

For supported code page values, refer to "Code page values" in the Progress DataDirect for ODBC Drivers
Reference.

The InstallDir keyword must be included in this section. The value of this keyword is the path to the
installation directory under which the /lib and /locale directories are contained. The installation process
automatically writes your installation directory to the default odbc.ini file.

For example, if you choose an installation location of /opt/odbc, then the following line is written to the
[ODBC] section of the default odbc.ini:

InstallDir=/opt/odbc

Note: If you are using only DSN-less connections through an odbcinst.ini file and do not have an odbc.ini
file, then you must provide [ODBC] section information in the [ODBC] section of the odbcinst.ini file. The
driver and Driver Manager always check first in the [ODBC] section of an odbc.ini file. If no odbc.ini file
exists or if the odbc.ini file does not contain an [ODBC] section, they check for an [ODBC] section in the
odbcinst.ini file. See "DSN-less connections" for details.

ODBC tracing allows you to trace calls to the ODBC driver and create a log of the traces for troubleshooting
purposes. The following keywords all control tracing: Trace, TraceFile, TraceDLL,
ODBCTraceMaxFileSize, and ODBCTraceMaxNumFiles.

For a complete discussion of tracing, refer to "ODBC trace" in the Progress DataDirect for ODBC Drivers
Reference.

See also
Connection option descriptions on page 129
Sample default odbc.ini file on page 44
File data sources on page 48
IANAAppCodePage on page 164
DSN-less connections on page 47

Sample default odbc.ini file
The following is a sample odbc.ini file that Setup installs in the installation directory. All occurrences of
ODBCHOME are replaced with your installation directory path during installation of the file. Values that you
must supply are enclosed by angle brackets (< >). If you are using the installed odbc.ini file, you must supply
the values and remove the angle brackets before that data source section will operate properly. Commented
lines are denoted by the # symbol. This sample shows a 32-bit driver with the driver file name beginning with
iv. A 64-bit driver file would be identical except that driver name would begin with dd and the list of data
sources would include only the 64-bit drivers.

[ODBC Data Sources]
SQL Server=DataDirect 8.0 SQL Server Wire Protocol

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.244

Chapter 4: Using the driver

[SQL Server]
Driver=ODBCHOME/lib/ivsqls28.so
Description=DataDirect 8.0 SQL Server Wire Protocol
AEKeyCacheTTL=-1
AEKeystoreClientSecret=
AEKeystorePrincipalId=
AllowedOpenSSLVersions=1.1.1,1.0.2
AlternateServers=
AlwaysReportTriggerResults=0
AnsiNPW=1
ApplicationIntent=0
ApplicationName=
ApplicationUsingThreads=1
AuthenticationMethod=1
BulkBinaryThreshold=32
BulkCharacterThreshold=-1
BulkLoadBatchSize=1024
BulkLoadFieldDelimiter=
BulkLoadOptions=2
BulkLoadThreshold=2
BulkLoadRecordDelimiter=
ColumnEncryption=Disabled
ConnectionReset=0
ConnectionRetryCount=0
ConnectionRetryDelay=3
CryptoLibName=
CryptoProtocolVersion=TLSv1.2,TLSv1.1,TLSv1
Database=<database_name>
DefaultLongDataBuffLen=1024
EnableBulkLoad=0
EnableQuotedIdentifiers=0
EnableServersideCursors=1
EncryptionMethod=0
FailoverGranularity=0
FailoverMode=0
FailoverPreconnect=0
FetchTSWTZasTimestamp=0
FetchTWFSasTime=1
GSSClient=native
HostName=<SQL_Server_host>
HostNameInCertificate=
InitializationString=
KeepAlive=0
KeepConnectionActive=0
Language=
LoadBalanceTimeout=0
LoadBalancing=0
LoginTimeout=15
LogonID=
MaxPoolSize=100
MinPoolSize=0
MultiSubnetFailover=0
PacketSize=-1
Password=
Pooling=0
PortNumber=<SQL_Server_server_port>
PRNGSeedFile=/dev/random
PRNGSeedSource=0
ProxyHost=
ProxyMode=0
ProxyPassword=
ProxyPort=0
ProxyUser=
QueryTimeout=0
ReportCodePageConversionErrors=0
SnapshotSerializable=0
SocketIdleTimeCheckInterval=1500
SSLLibName=
TrustStore=

45The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Configuring and connecting to data sources

TrustStorePassword=
ValidateServerCertificate=1
WorkStationID=
XMLDescribeType=-10

[ODBC]
IANAAppCodePage=4
InstallDir=ODBCHOME
Trace=0
TraceFile=odbctrace.out
TraceDll=ODBCHOME/lib/ivtrc28.so
ODBCTraceMaxFileSize=102400
ODBCTraceMaxNumFiles=10
[ODBC File DSN]
DefaultDSNDir=
UseCursorLib=0

To modify or create data sources in the odbc.ini file, use the following procedures.

• To modify a data source:

a) Using a text editor, open the odbc.ini file.

b) Modify the default attributes in the data source definitions as necessary based on your system specifics,
for example, enter the host name and port number of your system in the appropriate location.

Consult the "SQL Server Wire Protocol Attribute Names" table in the "Connection options descriptions"
for other specific attribute values.

c) After making all modifications, save the odbc.ini file and close the text editor.

Important: The "Connection option descriptions" section lists both the long and short names of the
attribute. When entering attribute names into odbc.ini, you must use the long name of the attribute.
The short name is not valid in the odbc.ini file.

• To create a new data source:

a) Using a text editor, open the odbc.ini file.

b) Copy an appropriate existing default data source definition and paste it to another location in the file.

c) Change the data source name in the copied data source definition to a new name. The data source
name is between square brackets at the beginning of the definition, for example, [SQL Server].

d) Modify the attributes in the new definition as necessary based on your system specifics, for example,
enter the host name and port number of your system in the appropriate location.

Consult the "SQL Server Wire Protocol Attribute Names" table in the "Connection option descriptions"
for other specific attribute values.

e) In the [ODBC] section at the beginning of the file, add a new data_source_name=installed-driver pair
containing the new data source name and the appropriate installed driver name.

f) After making all modifications, save the odbc.ini file and close the text editor.

Important: The "SQL ServerWire Protocol Attribute Names" table in the "Connection option descriptions"
section lists both the long and short name of the attribute. When entering attribute names into odbc.ini,
you must use the long name of the attribute. The short name is not valid in the odbc.ini file.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.246

Chapter 4: Using the driver

See also
Connection option descriptions on page 129

The example application
Progress DataDirect ships an application, named example, that is installed in the /samples/example
subdirectory of the product installation directory. Once you have configured your environment and data source,
use the example application to test passing SQL statements. To run the application, enter example and follow
the prompts to enter your data source name, user name, and password.

If successful, a SQL> prompt appears and you can type in SQL statements, such as SELECT * FROM
table_name. If example is unable to connect to the database, an appropriate error message appears.

Refer to the example.txt file in the example subdirectory for an explanation of how to build and use this
application.

Refer to "The example application" in Progress DataDirect for ODBC Drivers Reference for more information.

DSN-less connections
Connections to a data source can be made via a connection string without referring to a data source name
(DSN-less connections). This is done by specifying the DRIVER= keyword instead of the DSN= keyword in a
connection string, as outlined in the ODBC specification. A file named odbcinst.ini must exist when the
driver encounters DRIVER= in a connection string.

Setup installs a default version of this file in the product installation directory (see "ODBCINST" for details about
relocating and renaming this file). This is a plain text file that contains default DSN-less connection information.
You should not normally need to edit this file. The content of this file is divided into several sections.

At the beginning of the file is a section named [ODBC Drivers] that lists installed drivers, for example,

DataDirect 8.0 SQL Server Wire Protocol Driver=Installed.

This section also includes additional information for each driver.

The next section of the file is named [Administrator]. The keyword in this section,
AdminHelpRootDirectory, is required for the Linux ODBC Administrator to locate its help system. The
installation process automatically provides the correct value for this keyword.

The final section of the file is named [ODBC]. The [ODBC] section in the odbcinst.ini file fulfills the same
purpose in DSN-less connections as the [ODBC] section in the odbc.ini file does for data source connections.
See "Configuration through the system information (odbc.ini) file" for a description of the other keywords
this section.

Note: The odbcinst.ini file and the odbc.ini file include an [ODBC] section. If the information in these
two sections is not the same, the values in the odbc.ini [ODBC] section override those of the odbcinst.ini
[ODBC] section.

See also
ODBCINST on page 41
Configuration Through the System Information (odbc.ini) File on page 43

47The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Configuring and connecting to data sources

Sample odbcinst.ini File
The following is a sample odbcinst.ini. All occurrences of ODBCHOME are replaced with your installation
directory path during installation of the file. Commented lines are denoted by the # symbol. This sample shows
a 32-bit driver with the driver file name beginning with iv; a 64-bit driver file would be identical except that
driver names would begin with dd.

[ODBC Drivers]
DataDirect 8.0 SQL Server Wire Protocol Driver=Installed

[DataDirect 8.0 SQL Server Wire Protocol Driver]
Driver=ODBCHOME/lib/ivsqls28.so
APILevel=1
ConnectFunctions=YYY
DriverODBCVer=3.52
FileUsage=0
HelpRootDirectory=ODBCHOME/SQLServerHelp
Setup=ODBCHOME/lib/ivsqls28.so
SQLLevel=1

[ODBC]
#This section must contain values for DSN-less connections
#if no odbc.ini file exists. If an odbc.ini file exists,
#the values from that [ODBC] section are used.

IANAAppCodePage=4
InstallDir=ODBCHOME
Trace=0
TraceFile=odbctrace.out
TraceDll=ODBCHOME/lib/ivtrc28.so
ODBCTraceMaxFileSize=102400
ODBCTraceMaxNumFiles=10

File data sources
The Driver Manager on UNIX and Linux supports file data sources. The advantage of a file data source is that
it can be stored on a server and accessed by other machines, either Windows, UNIX, or Linux. See "Getting
started" for a general description of ODBC data sources on both Windows and UNIX.

A file data source is simply a text file that contains connection information. It can be created with a text editor.
The file normally has an extension of .dsn.

For example, a file data source for the driver would be similar to the following:

[ODBC]
Driver=DataDirect 8.0 SQL Server Wire Protocol
Database=default
Port=1433
HostName=SQLServer2
LogonID=JOHN

It must contain all basic connection information plus any optional attributes. Because it uses the "DRIVER="
keyword, an odbcinst.ini file containing the driver location must exist (see "DSN-less connections").

The file data source is accessed by specifying the FILEDSN= instead of the DSN= keyword in a connection
string, as outlined in the ODBC specification. The complete path to the file data source can be specified in the
syntax that is normal for the machine on which the file is located. For example, on Windows:

FILEDSN=C:\Program Files\Common Files\ODBC\DataSources\SQLServer2.dsn

or, on UNIX and Linux:

FILEDSN=/home/users/john/filedsn/SQLServer2.dsn

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.248

Chapter 4: Using the driver

If no path is specified for the file data source, the Driver Manager uses the DefaultDSNDir property, which is
defined in the [ODBC File DSN] setting in the odbc.ini file to locate file data sources (see "Data source
configuration on UNIX/Linux" for details). If the [ODBC File DSN] setting is not defined, the Driver Manager
uses the InstallDir setting in the [ODBC] section of the odbc.ini file. The Driver Manager does not support
the SQLReadFileDSN and SQLWriteFileDSN functions.

As with any connection string, you can specify attributes to override the default values in the data source:

FILEDSN=/home/users/john/filedsn/SQLServer2.dsn;UID=james;PWD=test01

See also
Getting started on page 27
DSN-less connections on page 47
Data source configuration on UNIX/Linux on page 43

UTF-16 applications on UNIX and Linux
Because the DataDirect Driver Manager allows applications to use either UTF-8 or UTF-16 Unicode encoding,
applications written in UTF-16 for Windows platforms can also be used on UNIX and Linux platforms.

The Driver Manager assumes a default of UTF-8 applications; therefore, two things must occur for it to determine
that the application is UTF-16:

• The definition of SQLWCHAR in the ODBC header files must be switched from "char *" to "short *". To do
this, the application uses #define SQLWCHARSHORT.

• The application must set the encoding for the environment or connection using one of the following attributes.
If your application passes UTF-8 encoded strings to some connections and UTF-16 encoded strings to other
connections in the same environment, encoding should be set for the connection only; otherwise, either
method can be used.

• To configure the encoding for the environment, set the ODBC environment attribute
SQL_ATTR_APP_UNICODE_TYPE to a value of SQL_DD_CP_UTF16, for example:

rc = SQLSetEnvAttr(*henv,
SQL_ATTR_APP_UNICODE_TYPE,(SQLPOINTER)SQL_DD_CP_UTF16, SQL_IS_INTEGER);

• To configure the encoding for the connection only, set the ODBC connection attribute
SQL_ATTR_APP_UNICODE_TYPE to a value of SQL_DD_CP_UTF16. For example:

rc = SQLSetConnectAttr(hdbc, SQL_ATTR_APP_UNICODE_TYPE, SQL_DD_CP_UTF16,
SQL_IS_INTEGER);

Data source configuration through a GUI

OnWindows, data sources are stored in theWindows Registry. You can configure and modify data sources
through the ODBC Administrator using a driver Setup dialog box, as described in this section.

When the driver is first installed, the values of its connection options are set by default. These values appear
on the driver Setup dialog box tabs when you create a new data source. You can change these default values
by modifying the data source. In the following procedure, the description of each tab is followed by a table that
lists the connection options for that tab and their initial default values. This table links you to a complete
description of the options and their connection string attribute equivalents. The connection string attributes are
used to override the default values of the data source if you want to change these values at connection time.

49The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Configuring and connecting to data sources

To configure a SQL Server data source:

1. Start the ODBC Administrator by selecting its icon from the Progress DataDirect for ODBC program group.

2. Select a tab:

• User DSN: If you are configuring an existing user data source, select the data source name and click
Configure to display the driver Setup dialog box.

If you are configuring a new user data source, click Add to display a list of installed drivers. Select the
driver and click Finish to display the driver Setup dialog box.

• System DSN: If you are configuring an existing system data source, select the data source name and
click Configure to display the driver Setup dialog box.

If you are configuring a new system data source, click Add to display a list of installed drivers. Select
the driver and click Finish to display the driver Setup dialog box.

• File DSN: If you are configuring an existing file data source, select the data source file and clickConfigure
to display the driver Setup dialog box.

If you are configuring a new file data source, click Add to display a list of installed drivers; then, select
a driver. Click Advanced if you want to specify attributes; otherwise, click Next to proceed. Specify a
name for the data source and click Next. Verify the data source information; then, click Finish to display
the driver Setup dialog box.

3. The General tab of the Setup dialog box appears by default.
Figure 1: General tab

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.250

Chapter 4: Using the driver

On this tab, provide values for the options in the following table; then, click Apply. The table provides links
to descriptions of the connection options. The General tab displays fields that are required for creating a
data source. The fields on all other tabs are optional, unless noted otherwise.

DescriptionConnection Options: General

Specifies the name of a data source in your Windows Registry or
odbc.ini file.

Default: None
Data Source Name on page 151

Specifies an optional long description of a data source. This description
is not used as a runtime connection attribute, but does appear in the
ODBC.INI section of the Registry and in the odbc.ini file.

Default: None

Description on page 152

The server to which you want to connect. This value can be a:

• IP address

• named server

• named instance

• server name

• virtual network name

See "Host Name" for details.

Default: None

Host Name on page 162

Specifies the port number of the server listener.

Default: 1433
Port Number on page 176

Specifies the name of the database to which you want to connect.

Default: None
Database on page 152

Determines whether the driver connects to your data source endpoint
through an HTTP proxy server.

If set to 0 - NONE, the driver connects directly to the Amazon Redshift
endpoint specified by the Host Name connection option.

If set to 1 - HTTP, the driver connects to the Amazon Redshift endpoint
through the HTTP proxy server specified by the ProxyHost connection
option.

Default: 0 - None

Proxy Mode on page 180

Specifies the Hostname and possibly the Domain of the Proxy Server.
The value specified can be a host name, a fully qualified domain name,
or an IPv4 or IPv6 address.

Default: Empty string

Proxy Host on page 179

51The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Configuring and connecting to data sources

DescriptionConnection Options: General

Specifies the port number where the Proxy Server is listening for HTTP
requests.

Default: 0

Proxy Port on page 181

Specifies the user name needed to connect to the Proxy Server.

Default: Empty string
Proxy User on page 182

Specifies the password needed to connect to the Proxy Server.

Default: Empty string
Proxy Password on page 181

4. At any point during the configuration process, you can click Test Connect to attempt to connect to the data
source using the connection options specified in the driver Setup dialog box. A logon dialog box appears
(see "Using a logon dialog box" for details). Note that the information you enter in the logon dialog box
during a test connect is not saved.

5. To further configure your driver, click on the following tabs. The corresponding sections provide details on
the fields specific to each configuration tab:

• Advanced tab allows you to configure advanced behavior.
• Security tab allows you to specify security data source settings.
• Failover tab allows you to specify failover data source settings.
• Pooling tab allows you to specify connection pooling settings.
• Bulk tab allows you to specify data source settings for DataDirect Bulk Load.

6. Click OK. When you click OK, the values you have specified become the defaults when you connect to the
data source. You can change these defaults by using this procedure to reconfigure your data source. You
can override these defaults by connecting to the data source using a connection string with alternate values.

See also
Using a logon dialog box on page 77

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.252

Chapter 4: Using the driver

Advanced tab
The Advanced tab allows you to specify additional data source settings. The fields are optional unless otherwise
noted. On this tab, provide values for the options in the following table; then, click Apply.
Figure 2: Advanced tab

DescriptionConnection Options:
Advanced

The name the database uses to identify your application.

Default: None

Application Name on page
139

A SQL command that is issued immediately after connecting to the database
to manage session settings.

Default: None

Initialization String on page
165

The national language to use for Microsoft SQL Server system messages. If
no language is specified, the connection uses the default language specified
for the login on the server.

Default: None.

Language on page 169

53The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Configuring and connecting to data sources

DescriptionConnection Options:
Advanced

Determines the number of bytes for each database protocol packet that is
transferred from the database server to the client machine.

If set to -1, the driver uses the maximum packet size that is set by the database
server.

If set to 0, the driver uses the default packet size that is used by the database
server.

If set to x, an integer from 1 to 127, the driver uses a packet size that is a
multiple of 512 bytes. For example, PacketSize=8 means to set the packet
size to 8 * 512 bytes (4096 bytes).

Default: -1

Packet Size on page 174

The workstation ID that is used by the client.

Default: None

Workstation ID on page 191

The number of seconds the driver waits for a connection to be established
before returning control to the application and generating a timeout error.

If set to -1, the connection request does not time out. The driver silently ignores
the SQL_ATTR_LOGIN_TIMEOUT attribute.

If set to 0, the connection request does not time out, but the driver responds to
the SQL_ATTR_LOGIN_TIMEOUT attribute.

If set to x, the connection request times out after the specified number of
seconds unless the application overrides this setting with the
SQL_ATTR_LOGIN_TIMEOUT attribute.

Default: 15

Login Timeout on page 171

The number of seconds for the default query timeout for all statements that are
created by a connection.

If set to -1, the query does not time out. The driver silently ignores the
SQL_ATTR_QUERY_TIMEOUT attribute.

If set to 0, the query does not time out, but the driver responds to the
SQL_ATTR_QUERY_TIMEOUT attribute.

If set to x, all queries time out after the specified number of seconds unless the
application overrides this value by setting the SQL_ATTR_QUERY_TIMEOUT
attribute.

Default: 0

Query Timeout on page 183

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.254

Chapter 4: Using the driver

DescriptionConnection Options:
Advanced

Specifies whether the driver periodically sends lightweight SQL operations to
the database after a connection has been idle for the time specified by the
Socket Idle Time (SocketIdleTimeCheckInterval) option. The SQL
operation resets the Azure SQLGateway or database idle timeout timer to keep
the connection open.

If disabled, the driver does not send lightweight SQL operations the database
to keep the connection open. Once a connection is idle for the duration specified
by the Azure SQL Gateway or database, the connection times out.

If enabled, the driver periodically sends lightweight SQL operations to the
database to keep the connection active. Once a connection is idle for the duration
specified by the Socket Idle Time option, the driver executes a lightweight query
(Select 0) to the database to prevent the connection from timing out.

Default: Disabled

Keep Connection Active on
page 166

Specifies the interval of time, in seconds, at which the driver checks the
connection for activity when Keep Connection Active is enabled
(KeepConnectionActive=1). If no activity has been detected during this
period, the driver issues a lightweight query (Select 0) to the database to
maintain the connection.

Default: 1500

Socket Idle Time on page 185

Determines which server-side cursors are enabled for the data source. This
option applies to both Keyset and Static cursors.

If set to 0 - Disabled, all server-side scrollable cursors are disabled for the data
source. Forward-only cursors on the server-side are enabled.

If set to 1 - Enable All Except Forward Only, all server-side scrollable cursors
are enabled for the data source, while forward-only cursors on the server side
are disabled.

If set to 2 - Enable Forward Only for Rowset Size >1, only forward-only cursors
are enabled on the server-side when the rowset size set to a value greater than
one.

If set to 3 - Enable All, all server-side cursors, scrollable and forward-only, are
enabled for the data source.

If set to 4 - Enable Forward Only for Select For Update, forward-only cursors
on the server-side are enabled only for Select For Update statements. For other
Select statements, the driver uses forward-only cursors on the client-side. This
setting avoids using driver emulation for other Select statements, thereby
improving performance and allowing the use of native updatable result sets.

Default: 1 - Enable All Except Forward Only

Enable Server Side Cursors
on page 155

55The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Configuring and connecting to data sources

DescriptionConnection Options:
Advanced

Specifies how the driver handles code page conversion errors that occur when
a character cannot be converted from one character set to another.

If set to 0 - Ignore Errors, the driver substitutes 0x1A for each character that
cannot be converted and does not return a warning or error.

If set to 1 - Return Error, the driver returns an error instead of substituting 0x1A
for unconverted characters.

If set to 2 - Return Warning, the driver substitutes 0x1A for each character that
cannot be converted and returns a warning.

Default: 0 - Ignore Errors

Report Codepage
Conversion Errors on page
184

The SQL data type that is returned by SQLGetTypeInfo for the XML data type.

See Using the XML data type on page 24 for further information about the XML
data type.

If set to -4 - SQL_LONGVARBINARY, the driver uses the description
SQL_LONGVARBINARY for columns that are defined as the XML data type.

If set to -10 - SQL_WLONGVARCHAR, the driver uses the description
SQL_WLONGVARCHAR for columns that are defined as the XML data type.

Default: -10 - SQL_WLONGVARCHAR

XML Describe Type on page
192

Specifies whether the driver connects to read-write databases or requests
read-only routing to connect to read-only database replicas. Read-only routing
only applies to connections in Microsoft SQL Server 2012 where Always On
Availability Groups have been deployed.

If set to 0 - READWRITE, the driver connects to a read-write node in the Always
On environment.

If set to 1 - READONLY, the driver requests read-only routing and connects to
the read-only database replicas specified by the server.

Default: 0 - READWRITE

Application Intent on page 138

Determines whether ANSI-defined behaviors are exposed. Setting this option
has no effect on NULL concatenation for Windows Azure SQL Database or
SQL Server versions higher than SQL Server 2012.

When enabled, the driver sets four ANSI-defined behaviors for handling NULL
comparisons: NULLS, character data padding, warnings, and NULL
concatenation.

When disabled, ANSI-defined behaviors are not exposed. If the driver appears
to be truncating trailing blank spaces, disable this attribute.

Default: Enabled

AnsiNPW on page 137

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.256

Chapter 4: Using the driver

DescriptionConnection Options:
Advanced

Determines whether the driver returns column values with the timestamp with
time zone data type as the ODBC data type SQL_TYPE_TIMESTAMP or
SQL_VARCHAR.

If enabled, the driver returns column values with the timestamp with time zone
data type as the ODBC type SQL_TYPE_TIMESTAMP. The time zone
information in the fetched value is truncated. Use this value if your application
needs to process values the same way as TIMESTAMP columns.

If disabled, the driver returns column values with the timestamp with time zone
data type as the ODBC data type SQL_VARCHAR. Use this value if your
application requires the time zone information in the fetched value.

Default: Disabled.

Fetch TSWTZ as Timestamp
on page 159

Determines whether the driver works with applications using multiple ODBC
threads.

If enabled, the driver works with single-threaded andmulti-threaded applications.

If disabled, the driver does not work with multi-threaded applications. If using
the driver with single-threaded applications, this value avoids additional
processing required for ODBC thread-safety standards.

Default: Enabled

Application Using Threads
on page 139

Determines whether the driver returns column values with the time data type
as the ODBC data type SQL_TYPE_TIME or SQL_TYPE_TIMESTAMP.

Supported only for Microsoft SQL Server 2008.

If enabled, the driver returns column values with the time data type as the ODBC
data type SQL_TYPE_TIME. The fractional seconds portion of the value is
truncated.

If disabled, the driver returns column values with the time data type as the ODBC
data type SQL_TYPE_TIMESTAMP. The fractional seconds portion of the value
is preserved. Time columns are not searchable when they are described and
fetched as timestamp.

Fetch TWFS as Time on
page 160

57The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Configuring and connecting to data sources

DescriptionConnection Options:
Advanced

Determines how the driver reports results that are generated by database
triggers (procedures that are stored in the database and executed, or fired,
when a table is modified). For Microsoft SQL Server 2005 and higher and
Windows Azure SQL Database, this includes triggers that are fired by Data
Definition Language (DDL) events.

If set to enabled, the driver returns all results, including results that are generated
by triggers. Multiple trigger results are returned one at a time. You can use the
SQLMoreResults function to return individual trigger results. Warnings and
errors are reported in the results as they are encountered.

If disabled:

• For Microsoft SQL Server 2005 and higher and Windows Azure SQL
Database, the driver does not report trigger results if the statement is a single
INSERT, UPDATE, DELETE, CREATE, ALTER, DROP, GRANT, REVOKE,
or DENY statement.

• For other Microsoft SQL Server databases, the driver does not report trigger
results if the statement is a single INSERT, UPDATE, or DELETE statement.

Default: Disabled

Always Report Trigger
Results on page 137

Specifies whether the driver enables TCPKeepAlive.

If disabled, the driver does not enable TCPKeepAlive.

If enabled, the driver enables TCPKeepAlive.

Default: Disabled

TCP Keep Alive on page 187

If enabled, the database enforces ANSI rules regarding quotation marks. Double
quotation marks can only be used for identifiers, such as column and table
names. Character strings must be enclosed in single quotation marks, for
example:

SELECT "au_id"
FROM "authors"
WHERE "au_lname" = 'O''Brien'

If disabled, applications that use quoted identifiers encounter errors when they
generate SQL statements with quoted identifiers.

Enable Quoted Identifiers on
page 154

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.258

Chapter 4: Using the driver

DescriptionConnection Options:
Advanced

Allows your application to use the snapshot isolation level if your Microsoft SQL
Server database is configured for Snapshot isolation. Supported only for
Microsoft SQL Server 2005 and higher.

See Using the Snapshot isolation level on page 125 for details about using the
snapshot isolation level.

When enabled and your application has the transaction isolation level set to
serializable, the application uses the snapshot isolation level.

When disabled and your application has the transaction isolation level set to
serializable, the application uses the serializable isolation level.

Default: Disabled

Use Snapshot Transactions
on page 189

Specifies whether explicit values may be inserted into IDENTITY columns
defined as NOT FOR REPLICATION.

If enabled, the driver allows explicit inserts on IDENTITY columns defined as
NOT FOR REPLICATION.

If disabled, the driver enforces constraints on IDENTITY columns imposed by
the NOT FOR REPLICATION flag.

Default: Disabled.

Enable Replication User on
page 155

Extended Options: Type a semi-colon separated list of connection options and their values. Use this
configuration option to set the value of undocumented connection options that are provided by Progress
DataDirect Customer Support. You can include any valid connection option in the Extended Options string, for
example:

Database=myDB;UndocumentedOption1=value [;UndocumentedOption2=value;]

If the Extended Options string contains option values that are also set in the setup dialog or data source, the
values of the options specified in the Extended Options string take precedence. However, connection options
that are specified on a connection string override any option value specified in the Extended Options string.

If you finished configuring your driver, proceed to Step 6 on page 52 in "Data source configuration through a
GUI". Optionally, you can further configure your driver by clicking on the following tabs. The following sections
provide details on the fields specific to each configuration tab:

• General tab allows you to configure options that are required for creating a data source.

• Security tab allows you to specify security data source settings.

• Failover tab allows you to specify failover data source settings.

• Pooling tab allows you to specify connection pooling settings.

• Bulk tab allows you to specify data source settings for DataDirect Bulk Load.

See also
Data source configuration through a GUI on page 49

59The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Configuring and connecting to data sources

Security tab
The Security Tab allows you to specify your security settings. The fields are optional unless otherwise noted.
On this tab, provide values for the options in the following table; then, click Apply.

See "Using security" for a general description of authentication and encryption and their configuration
requirements.
Figure 3: Security tab

DescriptionConnection Options:
Security

The default user ID that is used to connect to your database.

Default: None

User Name on page 190

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.260

Chapter 4: Using the driver

DescriptionConnection Options:
Security

Specifies the method the driver uses to authenticate the user to the server
when a connection is established.

If set to 1 - Encrypt Password, the driver sends the user ID in clear text and
an encrypted password to the server for authentication.

If set to 4 - Kerberos Authentication, the driver uses Kerberos authentication.
This method supports both Windows Active Directory Kerberos and MIT
Kerberos environments.

Setting this value to 4 - Kerberos Authentication also enables NTLMv2 and
NTLMv1 authentication on Windows platforms. The protocol used for a
connection is determined by the local security policy settings for the client.

If set to 13 - Active Directory Password, the driver uses Azure Active Directory
(Azure AD) authentication when establishing a connection to an Azure SQL
Database data store. All communications to the service are encrypted using
SSL.

Default: 1 - Encrypt Password

Authentication Method on
page 140

The name of the GSS client library that the driver uses to communicate with
the Key Distribution Center (KDC).

Default: native (the driver uses the GSS client for Windows Kerberos.)

GSS Client Library on page
161

The method the driver uses to encrypt data sent between the driver and the
database server.

If set to 0 - None, data is not encrypted.

If set to 1 - SSL, data is encrypted using the SSL protocols specified in the
Crypto Protocol Version connection option.

If set to 6 - RequestSSL, the login request and data are encrypted using SSL
if the server is configured for SSL. If the server is not configured for SSL, an
unencrypted connection is established. The SSL protocol used is determined
by the setting of the Crypto Protocol Version connection option.

If set to 7 - LoginSSL, the login request is encrypted using SSL regardless of
whether the server is configured for SSL. The data is encrypted using SSL if
the server is configured for SSL, and the data is unencrypted if the server is
not configured for SSL. The SSL protocol used is determined by the setting of
the Crypto Protocol Version connection option.

Note: This option can only be set to 1 - SSL when Authentication Method is
set to 1 - Encrypt Password.

Note: When establishing a connection to Microsoft Azure Synapse Analytics
or Microsoft Analytics Platform System, the driver will enable SSL data
encryption by default (1 - SSL).

Default: 0 - None

Encryption Method on page
156

61The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Configuring and connecting to data sources

DescriptionConnection Options:
Security

Specifies the cryptographic protocols to use when SSL is enabled using the
Encryption Method connection option (EncryptionMethod=1).

Default: TLSv1.2, TLSv1.1, TLSv1

Crypto Protocol Version on
page 149

Determines whether the driver validates the certificate that is sent by the
database server when SSL encryption is enabled (Encryption Method=1).

If enabled, the driver validates the certificate that is sent by the database server.
Any certificate from the server must be issued by a trusted CA in the truststore
file. If the Host Name In Certificate option is specified, the driver also validates
the certificate using a host name. The Host Name In Certificate option provides
additional security against man-in-the-middle (MITM) attacks by ensuring that
the server the driver is connecting to is the server that was requested.

If disabled, the driver does not validate the certificate that is sent by the
database server. The driver ignores any truststore information specified by the
Trust Store and Trust Store Password options.

Default: Enabled

Validate Server Certificate on
page 191

Specifies either the path and file name of the truststore file or the contents of
the TLS/SSL certificates to be used when SSL is enabled (Encryption
Method=1 | 6 | 7) and server authentication is used.

Default: None

Trust Store on page 187

Specifies the password that is used to access the truststore file when SSL is
enabled (EncryptionMethod=1) and server authentication is used.

Default: None

Trust Store Password on
page 189

A host name for certificate validation when SSL encryption is enabled
(Encryption Method=1) and validation is enabled (Validate Server
Certificate=1).

Default: None

Host Name In Certificate on
page 163

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.262

Chapter 4: Using the driver

DescriptionConnection Options:
Security

Specifies whether the driver is enabled for Always Encrypted functionality when
accessing data from encrypted columns.

If set to Enabled, the driver fully supports Always Encrypted functionality. The
driver transparently decrypts result sets and returns them to the application.
In addition, the driver transparently encrypts parameter values that are
associated with encrypted columns.

If set to ResultsetOnly, the driver transparently decrypts result sets and
returns them to the application. Queries containing parameters that affect
encrypted columns will return an error.

If set to Disabled, the driver does not use Always Encrypted functionality.
The driver does not attempt to decrypt data from encrypted columns, but will
return data as binary formatted cipher text. However, statements containing
parameters that reference encrypted columns are not supported and will return
an error.

Default: Disabled

Column Encryption on page
145

Determines whether the driver caches column encryption keys. This option is
used when Always Encrypted is enabled (ColumnEncryption=Enabled |
ResultsetOnly).

If set to -1, the driver caches column encryption keys on a per connection
basis. The keys remain in the cache until the connection is closed or the
application exits.

If set to 0, the driver does not cache column encryption keys.

Note: While caching can improve performance, column encryption keys are
designed to be deleted periodically from the cache as a security measure.
Therefore, we do not recommend caching keys for applications that remain
connected for long periods of time.

Default: -1

Key Cache Time To Live on
page 167

63The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Configuring and connecting to data sources

DescriptionConnection Options:
Security

Specifies the principal ID used to authenticate against the Azure Key Vault.
This option is used only when Always Encrypted is enabled
(ColumnEncryption=Enabled | ResultsetOnly) and Azure Key Vault is
the keystore provider. The Azure Key Vault stores the columnmaster key used
for Always Encrypted functionality. To access the column master key, the
principal ID and Client Secret must be used to authenticate against the Azure
Key Vault.

Note: The driver currently supports only Azure App Registration as the principal
ID.

Default: None

Key Store Principal Id on
page 168

Specifies the Client Secret used to authenticate against the Azure Key Vault.
This option is used only when the Always Encrypted feature is enabled
(ColumnEncryption=Enabled | ResultsetOnly) and the Azure Key Vault
is the keystore provider. The Azure Key Vault stores the column master key
used for Always Encrypted functionality. To access the column master key,
the Client Secret and principal ID must be used to authenticate against the
Azure Key Vault.

Default: None

Key Store Secret on page 169

If you finished configuring your driver, proceed to Step 6 on page 52 in "Data source configuration through a
GUI." Optionally, you can further configure your driver by clicking on the following tabs. The following sections
provide details on the fields specific to each configuration tab:

• General tab allows you to configure options that are required for creating a data source.

• Advanced tab allows you to configure advanced behavior.

• Failover tab allows you to specify failover data source settings.

• Pooling tab allows you to specify connection pooling settings.

• Bulk tab allows you to specify data source settings for DataDirect Bulk Load.

See also
Using security on page 90
Data source configuration through a GUI on page 49

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.264

Chapter 4: Using the driver

Failover tab
The Failover tab allows you to specify your failover data source settings. On this tab, provide values for the
options in the following table; then, click Apply. The fields are optional unless otherwise noted. See "Using
failover" for a general description of failover and its related connection options.
Figure 4: Failover tab

DescriptionConnection Options: Failover

Determines whether the driver uses client load balancing in its attempts
to connect to the database servers (primary and alternate).

If enabled, the driver uses client load balancing and attempts to connect
to the database servers (primary and alternate servers) in random order.

If disabled, the driver does not use client load balancing and connects
to each server based on their sequential order (primary server first, then,
alternate servers in the order they are specified).

Default: Disabled

Load Balancing on page 171

The number of times the driver retries connection attempts to the primary
database server, and if specified, alternate servers until a successful
connection is established.

Default: 0

ConnectionRetry Count on page 148

65The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Configuring and connecting to data sources

DescriptionConnection Options: Failover

Specifies the number of seconds the driver waits between connection
retry attempts when Connection Retry Count is set to a positive integer.

If set to 0, there is no delay between retries.

If set to x, the driver waits the specified number of seconds between
connection retry attempts.

Default: 3

Connection Retry Delay on page 148

A list of alternate database servers to which the driver tries to connect
if the primary database server is unavailable. Specifying a value for this
option enables connection failover for the driver. The value you specify
must be in the form of a string that defines the physical location of each
alternate server. All of the other required connection information for each
alternate server is the same as what is defined for the primary server
connection. For additional information, see "Alternate Servers".

Default: None

Alternate Servers on page 136

Determines whether the driver attempts parallel connections to the
failover IP addresses of an Availability Group during a multi-subnet
failover.

If set to 1 (Enabled), the driver attempts parallel connections to all failover
IP addresses in an Availability Group when the connection is broken or
the listener IP address is unavailable. The first IP address to successfully
respond to the request is used for the connection. This setting is only
supported when your environment is configured for Always On Availability
Groups.

If set to 0 (Disabled), the driver uses the failover method specified by
the Failover Mode connection option when the primary server is
unavailable. Use this setting if your environment is not configured for
Always On Availability Groups.

Multi-Subnet Failover on page 174

Specifies the type of failover method the driver uses.

If set to 0 - Connection, the driver provides failover protection for new
connections only.

If set to 1 - Extended Connection, the driver provides failover protection
for new and lost connections, but not any work in progress.

If set to 2 - Select, the driver provides failover protection for new and
lost connections. In addition, it preserves the state of work performed
by the last Select statement executed.

Failover Mode on page 158

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.266

Chapter 4: Using the driver

DescriptionConnection Options: Failover

Determines whether the driver fails the entire failover process or
continues with the process if errors occur while trying to reestablish a
lost connection.

If set to 0 - Non-Atomic, the driver continues with the failover process
and posts any errors on the statement on which they occur.

If set to 1 - Atomic the driver fails the entire failover process if an error
is generated as the result of anything other than executing and
repositioning a Select statement. If an error is generated as a result of
repositioning a result set to the last row position, the driver continues
with the failover process, but generates a warning that the Select
statement must be reissued.

If set to 2 - Atomic Including Repositioning, the driver fails the entire
failover process if any error is generated as the result of restoring the
state of the connection or the state of work in progress.

If set to 3 - Disable Integrity Check, the driver does not verify that the
rows that were restored during the failover process match the original
rows. This value applies only when Failover Mode is set to 2 - Select.

Default: 0 - Non-Atomic

Failover Granularity on page 157

Specifies whether the driver tries to connect to the primary and an
alternate server at the same time.

If disabled, the driver tries to connect to an alternate server only when
failover is caused by an unsuccessful connection attempt or a lost
connection.

If enabled, the driver tries to connect to the primary and an alternate
server at the same time. This can be useful if your application is
time-sensitive and cannot absorb the wait for the failover connection to
succeed.

Default: Disabled

Failover Preconnect on page 159

If you finished configuring your driver, proceed to Step 6 on page 52 in "Data source configuration through a
GUI." Optionally, you can further configure your driver by clicking on the following tabs. The following sections
provide details on the fields specific to each configuration tab:

• General tab allows you to configure options that are required for creating a data source.

• Advanced tab allows you to configure advanced behavior.

• Security tab allows you to specify security data source settings.

• Pooling tab allows you to specify connection pooling settings.

• Bulk tab allows you to specify data source settings for DataDirect Bulk Load.

See also
Using failover on page 80
Alternate Servers on page 136
Data source configuration through a GUI on page 49

67The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Configuring and connecting to data sources

Pooling tab
The Pooling Tab allows you to specify your pooling data source settings. On this tab, provide values for the
options in the following table; then, click Apply. The fields are optional unless otherwise noted. See "Using
DataDirect connection pooling" for a general description of connection pooling.
Figure 5: Pooling tab

DescriptionConnection Options: Pooling

Specifies whether to use the driver’s connection pooling.

If enabled, the driver uses connection pooling.

If disabled, the driver does not use connection pooling.

Default: Disabled

Connection Pooling on page 146

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.268

Chapter 4: Using the driver

DescriptionConnection Options: Pooling

Determines whether the state of connections that are removed from
the connection pool for reuse by the application is reset to the initial
configuration of the connection.

If enabled, the state of connections removed from the connection
pool for reuse by an application is reset to the initial configuration of
the connection. Resetting the state can negatively impact performance
because additional commands must be sent over the network to the
server to reset the state of the connection.

If disabled, the state of connections is not reset.

Default: Disabled

Connection Reset on page 147

The maximum number of connections allowed within a single
connection pool. When the maximum number of connections is
reached, no additional connections can be created in the connection
pool.

Default: 100

Max Pool Size on page 172

The minimum number of connections that are opened and placed in
a connection pool, in addition to the active connection, when the pool
is created. The connection pool retains this number of connections,
even when some connections exceed their Load Balance Timeout
value.

If set to 0, no connections are opened in addition to the current
existing connection.

If set to x, the start-up number of connections in the pool is x in
addition to the current existing connection.

Default: 0

Min Pool Size on page 173

Specifies the number of seconds to keep inactive connections open
in a connection pool. An inactive connection is a database session
that is not associated with an ODBC connection handle, that is, a
connection in the pool that is not in use by an application.

If set to 0, inactive connections are kept open.

If set to x, inactive connections are closed after the specified number
of seconds passes.

Default: 0 (inactive connections are kept open.)

Load Balance Timeout on page 170

If you finished configuring your driver, proceed to Step 6 on page 52 in "Data source configuration through a
GUI (Windows)." Optionally, you can further configure your driver by clicking on the following tabs. The following
sections provide details on the fields specific to each configuration tab:

• General tab allows you to configure options that are required for creating a data source.

• Advanced tab allows you to configure advanced behavior.

• Security tab allows you to specify security data source settings.

• Failover tab allows you to specify failover data source settings.

69The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Configuring and connecting to data sources

• Bulk tab allows you to specify data source settings for DataDirect Bulk Load.

See also
Using DataDirect Connection Pooling on page 107
Data source configuration through a GUI on page 49

Bulk tab
The Bulk tab allows you to specify DataDirect Bulk Load data source settings. On this tab, provide values for
the options in the following table; then, click Apply. The fields are optional unless otherwise noted. See "Using
DataDirect Bulk Load" for more information.
Figure 6: Bulk tab

DescriptionConnection Options: Bulk

Specifies the bulk load method.

If enabled, the driver uses the database bulk load protocol when an
application executes an INSERT with multiple rows of parameter data.
If the protocol cannot be used, the driver returns a warning.

If disabled, the driver uses standard parameter arrays.

Default: Disabled

Enable Bulk Load on page 153

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.270

Chapter 4: Using the driver

DescriptionConnection Options: Bulk

Toggles options for the bulk load process.

Keep Identity - Preserves source identity values. When not enabled,
identity values are assigned by the destination.

Check Constraints - Checks constraints while data is being inserted.

Keep Nulls - Preserves null values in the destination table regardless
of the settings for default values. When not enabled, null values are
replaced by column default values, where applicable.

Table Lock - Assigns a table lock for the duration of the bulk copy
operation. Other applications are not permitted to update the table
during the copy operation. When not enabled, the default bulk locking
mechanism (row or table) specified by the table lock on bulk load
server option is used.

Fire Triggers - Causes the server to fire the insert triggers for rows
being inserted into the database.

Default: Table Lock enabled

Bulk Options on page 144

Specifies the character that the driver will use to delimit the field entries
in a bulk load data file.

Default: None

Field Delimiter on page 161

Specifies the character that the driver will use to delimit the record
entries in a bulk load data file.

Default: None

Record Delimiter on page 184

The maximum size, in KB, of binary data that is exported to the bulk
data file.

If set to -1, all binary data, regardless of size, is written to the bulk
data file, not to an external file.

If set to 0, all binary data, regardless of size, is written to an external
file, not the bulk data file. A reference to the external file is written to
the bulk data file.

If set to x, any binary data exceeding this specified number of KB is
written to an external file, not the bulk data file. A reference to the
external file is written to the bulk data file.

Default: None

Bulk Binary Threshold on page 142

The number of rows that the driver sends to the database at a time
during bulk operations. This value applies to all methods of bulk
loading.

Default: 1024

Batch Size on page 141

71The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Configuring and connecting to data sources

DescriptionConnection Options: Bulk

The maximum size, in KB, of character data that is exported to the
bulk data file.

If set to -1, all character data, regardless of size, is written to the bulk
data file, not to an external file.

If set to 0, all character data regardless of size, is written to an external
file, not the bulk data file. A reference to the external file is written to
the bulk data file.

If set to x, any character data exceeding this specified number of KB
is written to an external file, not the bulk data file. A reference to the
external file is written to the bulk data file.

Default: -1

Bulk Character Threshold on page 142

Determines when the driver uses bulk load for insert, update, delete,
or batch operations. If the Enable Bulk Load option is enabled and
the number of rows affected by an insert, update, delete, or batch
operation exceeds the threshold specified by this option, the driver
uses SQL Server bulk load protocol to perform the operation.

If set to 0, the driver always uses bulk load to execute insert, update,
delete, or batch operations.

If set to x, the driver only uses bulk load if the Enable Bulk Load option
is enabled and the number of rows to be updated by an insert, update,
delete, or batch operation exceeds the threshold. If the operation
times out, the driver returns an error.

Default: 2

Bulk Load Threshold on page 143

If your application is already coded to use parameter array batch functionality, you can leverage DataDirect
Bulk Load features through the Enable Bulk Load connection option. Enabling this option automatically converts
the parameter array batch operation to use the database bulk load protocol.

If you are not using parameter array batch functionality, you can export data to a bulk load data file, verify the
metadata of the bulk load configuration file against the structure of the target table, and bulk load data to a
table. Use the following steps to accomplish these tasks.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.272

Chapter 4: Using the driver

1. To export data from a table to a bulk load data file, click Export Table from the Bulk tab. The Export Table
dialog box appears.
Figure 7: Export Table dialog box

Both a bulk data file and a bulk configuration file are produced by exporting a table. The configuration file
has the same name as the data file, but with an XML extension. See "Using DataDirect Bulk Load" for details
about these files.

The bulk export operation can create a log file and can also export to external files. See "External overflow
files" for more information. The export operation can be configured such that if any errors or warnings occur:

• The operation always completes.

• The operation always terminates.

• The operation terminates after a certain threshold of warnings or errors is exceeded.

Table Name: A string that specifies the name of the source database table containing the data to be exported.

Export Filename: A string that specifies the path (relative or absolute) and file of the bulk load data file to
which the data is to be exported. It also specifies the file name of the bulk configuration file. The file name
must be the fully qualified path to the bulk data file. These files must not already exist; if one of both of them
already exists, an error is returned.

Log Filename: A string that specifies the path (relative or absolute) and file name of the bulk log file. The
log file is created if it does not exist. The file name must be the fully qualified path to the log file. Events
logged to this file are:

• Total number of rows fetched

• A message for each row that failed to export

• Total number of rows that failed to export

• Total number of rows successfully exported

Information about the load is written to this file, preceded by a header. Information about the next load is
appended to the end of the file.

If you do not supply a value for Log Filename, no log file is created.

Error Tolerance: A value that specifies the number of errors to tolerate before an operation terminates. A
value of 0 indicates that no errors are tolerated; the operation fails when the first error is encountered.

The default of -1 means that an infinite number of errors is tolerated.

73The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Configuring and connecting to data sources

Warning Tolerance: A value that specifies the number of warnings to tolerate before an operation terminates.
A value of 0 indicates that no warnings are tolerated; the operation fails when the first warning is encountered.

The default of -1 means that an infinite number of warnings is tolerated.

Code Page: A value that specifies the code page value to which the driver must convert all data for storage
in the bulk data file. See "Character set conversions" for more information.

The default value on Windows is the current code page of the machine. On UNIX/Linux/macOS, the default
value is 4 (ISO 8559-1 Latin-1).

Click Export Table to connect to the database and export data to the bulk data file or click Cancel.

Click Export Table to connect to the database and export data to the bulk data file or click Cancel.

2. To verify the metadata of the bulk load configuration file against the structure of the target database table,
click Verify from the Bulk tab. See "Verification of the bulk load configuration file" for details. The ODBC
SQL Server Wire Protocol Verify Driver Setup dialog box appears.
Figure 8: ODBC SQL Server Wire Protocol Verify Driver Setup dialog box

Table Name: A string that specifies the name of the target database table into which the data is to be loaded.

Configuration Filename: A string that specifies the path (relative or absolute) and file name of the bulk
configuration file. The file name must be the fully qualified path to the configuration file.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.274

Chapter 4: Using the driver

Click Verify to verify table structure or click Cancel.

3. To bulk load data from the bulk data file to a database table, click Load Table from the Bulk tab. The Load
File dialog box appears.
Figure 9: Load File dialog box

The load operation can create a log file and can also create a discard file that contains rows rejected during
the load. The discard file is in the same format as the bulk load data file. After fixing reported issues in the
discard file, the bulk load can be reissued using the discard file as the bulk load data file.

The export operation can be configured such that if any errors or warnings occur:

• The operation always completes.

• The operation always terminates.

• The operation terminates after a certain threshold of warnings or errors is exceeded.

If a load fails, the Load Start and Load Count options can be used to control which rows are loaded when
a load is restarted after a failure.

Table Name: A string that specifies the name of the target database table into which the data is loaded.

Load Data Filename: A string that specifies the path (relative or absolute) and file name of the bulk data
file from which the data is loaded. The file name must be the fully qualified path to the bulk data file.

Configuration Filename: A string that specifies the path (relative or absolute) and file name of the bulk
configuration file. The file name must be the fully qualified path to the configuration file.

Log Filename: A string that specifies the path (relative or absolute) and file name of the bulk log file. The
file name must be the fully qualified path to the log file. Specifying a value for Log Filename creates the file
if it does not already exist. Events logged to this file are:

• Total number of rows read

• Message for each row that failed to load

75The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Configuring and connecting to data sources

• Total number of rows that failed to load

• Total number of rows successfully loaded

Information about the load is written to this file, preceded by a header. Information about the next load is
appended to the end of the file.

If you do not specify a value for Log Filename, no log file is created.

Discard Filename: A string that specifies the path (relative or absolute) and file name of the bulk discard
file. The file name must be the fully qualified path to the discard file. Any row that cannot be inserted into
database as result of bulk load is added to this file, with the last row rejected added to the end of the file.

Information about the load is written to this file, preceded by a header. Information about the next load is
appended to the end of the file.

If you do not specify a value for Discard Filename, a discard file is not created.

Error Tolerance: A value that specifies the number of errors to tolerate before an operation terminates. A
value of 0 indicates that no errors are tolerated; the operation fails when the first error is encountered.

The default of -1 means that an infinite number of errors is tolerated.

Load Start: A value that specifies the first row to be loaded from the data file. Rows are numbered starting
with 1. For example, when Load Start is 10, the first 9 rows of the file are skipped and the first row loaded
is row 10. This option can be used to restart a load after a failure.

The default value is 1.

Read Buffer Size (KB): A value that specifies the size, in KB, of the buffer that is used to read the bulk
data file for a bulk load operation.

The default value is 2048.

Warning Tolerance: A value that specifies the number of warnings to tolerate before an operation terminates.
A value of 0 indicates that no warnings are tolerated; the operation fails when the first warning is encountered.

The default of -1 means that an infinite number of warnings is tolerated.

Load Count: A value that specifies the number of rows to be loaded from the data file. The bulk load
operation loads rows up to the value of Load Count from the file to the database. It is valid for Load Count
to specify more rows than exist in the data file. The bulk load operation completes successfully when either
the number of rows specified by the Load Count value has been loaded or the end of the data file is reached.
This option can be used in conjunction with Load Start to restart a load after a failure.

The default value is the maximum value for SQLULEN. If set to 0, no rows are loaded.

Click Load Table to connect to the database and load the table or click Cancel.

If you finished configuring your driver, proceed to Step 6 on page 52 in "Data source configuration through a
GUI (Windows)." Optionally,you can further configure your driver by clicking on the following tabs. The following
sections provide details on the fields specific to each configuration tab:

• General tab allows you to configure options that are required for creating a data source.

• Advanced tab allows you to configure advanced behavior.

• Security tab allows you to specify security data source settings.

• Failover tab allows you to specify failover data source settings.

• Pooling tab allows you to specify connection pooling settings.

See also
Using DataDirect Bulk Load on page 111

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.276

Chapter 4: Using the driver

External overflow files on page 118
Character set conversions on page 118
Verification of the bulk load configuration file on page 116
Data source configuration through a GUI on page 49

Using a connection string
If you want to use a connection string for connecting to a database, or if your application requires it, you must
specify either a DSN (data source name), a File DSN, or a DSN-less connection in the string. The difference
is whether you use the DSN=, FILEDSN=, or the DRIVER= keyword in the connection string, as described in
the ODBC specification. A DSN or FILEDSN connection string tells the driver where to find the default connection
information. Optionally, you may specify attribute=value pairs in the connection string to override the default
values stored in the data source.

The DSN connection string has the form:

DSN=data_source_name[;attribute=value[;attribute=value]...]

The FILEDSN connection string has the form:

FILEDSN=filename.dsn[;attribute=value[;attribute=value]...]

The DSN-less connection string specifies a driver instead of a data source. All connection information must be
entered in the connection string because the information is not stored in a data source.

The DSN-less connection string has the form:

DRIVER=[{]driver_name[}][;attribute=value[;attribute=value]...]

"Connection option descriptions" lists the long and short names for each attribute, as well as the initial default
value when the driver is first installed. You can specify either long or short names in the connection string.

An example of a DSN connection string with overriding attribute values for SQL Server for Linux/UNIX/Windows
is:

DSN=ACCOUNTING;DATABASE=ACCT

A FILEDSN connection string is similar except for the initial keyword:

FILEDSN=SQLServer.dsn;DATABASE=ACCT

A DSN-less connection string must provide all necessary connection information:

DRIVER={DataDirect 8.0 SQL Server Wire Protocol};HOST=SQLServer1;PORT=1433;
UID=JOHN;PWD=XYZZY;DB=SQLSdb1

See also
Connection option descriptions on page 129

Using a logon dialog box
Some ODBC applications display a Logon dialog box when you are connecting to a data source. In these
cases, the data source name has already been specified.

77The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Configuring and connecting to data sources

Note: The Logon Dialog is not displayed if Authentication Mode has previously been set to Kerberos and the
Host Name is specified in the data source.

In the Logon dialog box, provide the following information:

1. Type an IP address in Host Name in following format: IP_address. For example, you can enter
199.226.224.34.

The IP address can be specified in IPv4 on Windows, and in either IPv4 or IPv6 format, or a combination
of the two, on UNIX. See "Using IP addresses" for details about these formats.

If your network supports named servers, you can specify an address as: server_name. For example, you
can enter SSserver.

To specify a named instance of Microsoft SQL Server, use the format: server_name\instance_name.
If only a server name is specified with no instance name, the driver uses the default instance on the server.

2. Type the Port Number of the server listener. The default is 1433.

3. Type the name of the database to which you want to connect. If you do not specify a value, the default
database that is defined by Microsoft SQL Server is used.

4. Type your Microsoft SQL Server login ID.

5. Type your password.

6. Select an Authentication Method:

If set to 1 - Encrypt Password, the driver sends the user ID in clear text and an encrypted password to the
server for authentication.

If set to 4 - Kerberos, the driver uses Kerberos authentication. This method supports both Windows Active
Directory Kerberos and MIT Kerberos environments.
If set to 13 - Active Directory Password, the driver uses Azure Active Directory (Azure AD) authentication
when establishing a connection to an Azure SQL Database data store. All communications to the service
are encrypted using SSL.

7. Click OK to complete the logon and to update the values in the Registry.

See also
Using IP addresses on page 122

Performance considerations
The following connection options can affect driver performance.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.278

Chapter 4: Using the driver

Always Encrypted: The following options related to the Always Encrypted feature affect performance:

• Column Encryption (ColumnEncryption): Due to the overhead associated with encrypting and decrypting
data, the Always Encrypted functionality can adversely affect performance when enabled
(ColumnEncryption=Enabled | ResultsetOnly). You can mitigate the performance impact of Always
Encrypted depending on your use case:

• If your application only needs to retrieve and decrypt columns, you can improve performance over the
behavior of the Enabled setting by specifying a value of ResultsetOnly. In this setting, Always
Encrypted behavior is enabled only when returning result sets. Queries containing parameters that affect
encrypted columns will return an error.

• If your application only occasionally needs to encrypt or decrypt columns, you can override the Column
Encryption option by setting a value for the SQL_SOPT_SS_COLUMN_ENCRYPTION statement attribute
for a statement. SQL_SOPT_SS_COLUMN_ENCRYPTION allows you to toggle support for Always Encrypted
without having to establish a new connection, thereby reducing the performance impact when you are
not using the feature. Note that the statement attribute is only supported when
ColumnEncryption=Enabled | ResultsetOnly. See "Always Encrypted" for details.

• Key Cache Time To Live (AEKeyCacheTTL): When Always Encrypted functionality is enabled
(ColumnEncryption=Enabled | ResultsetOnly), you can determine whether column encryption keys
are cached using the Key Cache Time To Live option. Caching column encryption keys can provide
performance gains by eliminating the overhead associated with fetching and decrypting keys for the same
data multiple times during a connection. Note that column encryption keys are designed to be deleted from
the cache as a security measure. Therefore, we do not recommend caching column encryption keys for
applications that remain connected for long periods of time.

Connection Pooling (Pooling): If you enable the driver to use connection pooling, you can set additional
options that affect performance:

• Load Balance Timeout (LoadBalanceTimeout): You can define how long to keep connections in the pool.
The time that a connection was last used is compared to the current time and, if the timespan exceeds the
value of the Load Balance Timeout option, the connection is destroyed. The Min Pool Size option can cause
some connections to ignore this value.

• Connection Reset (ConnectionReset): Resetting a re-used connection to the initial configuration settings
impacts performance negatively because the connection must issue additional commands to the server.

• Max Pool Size (MaxPoolSize): Setting the maximum number of connections that the pool can contain too
low might cause delays while waiting for a connection to become available. Setting the number too high
wastes resources.

• Min Pool Size (MinPoolSize): A connection pool is created when the first connection with a unique
connection string connects to the database. The pool is populated with connections up to the minimum pool
size, if one has been specified. The connection pool retains this number of connections, even when some
connections exceed their Load Balance Timeout value.

Enable Bulk Load (EnableBulkLoad): If your application performs bulk loading of data, you can improve
performance by configuring the driver to use the database system's bulk load functionality instead of database
array binding. The trade-off to consider for improved performance is that using the bulk load functionality can
bypass data integrity constraints.

Enable Server Side Cursors (EnableServersideCursors): Employing scrollable cursors are more expensive
than using forward-only cursors, and, therefore, can adversely impact performance. If your application does
not always require the use of scrollable cursors, you can restrict the use of server-side scrollable cursors using
the Enable Server Side Cursors option. For best performance, you can disable all server-side scrollable cursors
by setting EnableServersideCursors=0.

Encryption Method (EncryptionMethod): Data encryption may adversely affect performance because of the
additional overhead (mainly CPU usage) that is required to encrypt and decrypt data.

79The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Configuring and connecting to data sources

Failover Mode (FailoverMode): Although high availability that replays queries after a failure provides increased
levels of protection, it can adversely affect performance because of increased overhead.

Packet Size (PacketSize): Typically, it is optimal for the client to use the maximum packet size that the database
server allows. This reduces the total number of round trips required to return data to the client, thus improving
performance. Therefore, performance can be improved if the PacketSize attribute is set to the maximum packet
size of the server.

Use Snapshot Transactions (SnapshotSerializable): You must have your Microsoft SQL Server 2005 and
higher database configured for snapshot isolation for this connection option to work. Snapshot Isolation provides
transaction-level read consistency and an optimistic approach to data modifications by not acquiring locks on
data until data is to be modified. This Microsoft SQL Server 2005 and higher feature can be useful if you want
to consistently return the same result set even if another transaction has changed the data and 1) your application
executes many read operations or 2) your application has long running transactions that could potentially block
users from reading data. This feature has the potential to eliminate data contention between read operations
and update operations. When this connection option is enabled, performance is improved due to increased
concurrency.

See "Using the Snapshot isolation level" for details.

See also
Column Encryption on page 145
Always Encrypted on page 104
Connection Pooling on page 146
Load Balance Timeout on page 170
Connection Reset on page 147
Max Pool Size on page 172
Min Pool Size on page 173
Enable Bulk Load on page 153
Enable Server Side Cursors on page 155
Encryption Method on page 156
Failover Mode on page 158
Packet Size on page 174
Using the Snapshot isolation level on page 125

Using failover
To ensure continuous, uninterrupted access to data, the Progress DataDirect for ODBC driver provides the
following levels of failover protection, listed from basic to more comprehensive:

• Connection failover provides failover protection for new connections only. The driver fails over new
connections to an alternate, or backup, database server if the primary database server is unavailable, for
example, because of a hardware failure or traffic overload. If a connection to the database is lost, or dropped,
the driver does not fail over the connection. This failover method is the default.

• Extended connection failover provides failover protection for new connections and lost database connections.
If a connection to the database is lost, the driver fails over the connection to an alternate server, preserving
the state of the connection at the time it was lost, but not any work in progress.

• Select Connection failover provides failover protection for new connections and lost database connections.
In addition, it provides protection for Select statements that have work in progress. If a connection to the
database is lost, the driver fails over the connection to an alternate server, preserving the state of the
connection at the time it was lost and preserving the state of any work being performed by Select statements.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.280

Chapter 4: Using the driver

The method you choose depends on how failure tolerant your application is. For example, if a communication
failure occurs while processing, can your application handle the recovery of transactions and restart them?
Your application needs the ability to recover and restart transactions when using either extended connection
failover mode or select connection failover mode. The advantage of select mode is that it preserves the state
of any work that was being performed by the Select statement at the time of connection loss. If your application
had been iterating through results at the time of the failure, when the connection is reestablished the driver
can reposition on the same row where it stopped so that the application does not have to undo all of its previous
result processing. For example, if your application were paging through a list of items on a Web page when a
failover occurred, the next page operation would be seamless instead of starting from the beginning.
Performance, however, is a factor in selecting a failover mode. Select mode incurs additional overhead when
tracking what rows the application has already processed.

You can specify which failover method you want to use by setting the Failover Mode (FailoverMode) connection
option. Read the following sections for details on each failover method:

• Connection Failover

• Extended Connection Failover

• Select Connection Failover

Regardless of the failover method you choose, you must configure one or multiple alternate servers using the
Alternate Servers connection option. See "Guidelines for primary and alternate servers" for information about
primary and alternate servers.

See also
Failover Mode on page 158
Connection failover on page 81
Extended connection failover on page 82
Select connection failover on page 84
Alternate Servers on page 136
Guidelines for primary and alternate servers on page 85

Connection failover
Connection failover allows an application to connect to an alternate, or backup, database server if the primary
database server is unavailable, for example, because of a hardware failure or traffic overload. Connection
failover provides failover protection for new connections only and does not provide protection for lost connections
to the database, nor does it preserve states for transactions or queries.

You can customize the driver for connection failover by configuring a list of alternate database servers that are
tried if the primary server is not accepting connections. Connection attempts continue until a connection is
successfully established or until all the alternate database servers have been tried the specified number of
times.

For example, suppose you have the environment shown in the following illustration with multiple database
servers: Database Server A, B, and C. Database Server A is designated as the primary database server,
Database Server B is the first alternate server, and Database Server C is the second alternate server.

81The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Using failover

First, the application attempts to connect to the primary database server, Database Server A (1). If connection
failover is enabled and Database Server A fails to accept the connection, the application attempts to connect
to Database Server B (2). If that connection attempt also fails, the application attempts to connect to Database
Server C (3).

In this scenario, it is probable that at least one connection attempt would succeed, but if no connection attempt
succeeds, the driver can retry each alternate database server (primary and alternate) for a specified number
of attempts. You can specify the number of attempts that are made through the connection retry feature. You
can also specify the number of seconds of delay, if any, between attempts through the connection delay feature.
See "Using connection retry" for more information.

A driver fails over to the next alternate database server only if a successful connection cannot be established
with the current alternate server. If the driver successfully establishes communication with a database server
and the connection request is rejected by the database server because, for example, the login information is
invalid, then the driver generates an error and does not try to connect to the next database server in the list. It
is assumed that each alternate server is a mirror of the primary and that all authentication parameters and
other related information are the same.

For details on configuring connection failover for your driver, see "Configuring failover-related options."

See also
Using Connection Retry on page 86
Configuring failover-related options on page 86

Extended connection failover
Extended connection failover provides failover protection for the following types of connections:

• New connections, in the same way as described in "Connection failover"

• Lost connections

When a connection to the database is lost, the driver fails over the connection to an alternate server, restoring
the same state of the connection at the time it was lost. For example, when reestablishing a lost connection
on the alternate database server, the driver performs the following actions:

• Restores the connection using the same connection options specified by the lost connection

• Reallocates statement handles and attributes

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.282

Chapter 4: Using the driver

• Logs in the user to the database with the same user credentials

• Restores any prepared statements associated with the connection and repopulates the statement pool

• Restores manual commit mode if the connection was in manual commit mode at the time of the failover

The driver does not preserve work in progress. For example, if the database server experienced a hardware
failure while processing a query, partial rows processed by the database and returned to the client would be
lost. If the driver was in manual commit mode and one or more Inserts or Updates were performed in the current
transaction before the failover occurred, then the transaction on the primary server is rolled back. The Inserts
or Updates done before the failover are not committed to the primary server. Your application needs to rerun
the transaction after the failover because the Inserts or Updates done before the failover are not repeated by
the driver on the failover connection.

When a failover occurs, if a statement is in allocated or prepared state, the next operation on the statement
returns a SQL state of 01000 and a vendor code of 0. If a statement is in an executed or prepared state, the
next operation returns a SQL state of 40001 and a vendor code of 0. Either condition returns an error message
similar to:

Your connection has been terminated. However, you have been successfully connected to
the next available AlternateServer: 'HOSTNAME=Server4:PORTNUMBER= 1521:SERVICENAME=test'.
All active transactions have been rolled back.

The driver retains all connection settings made through ODBC API calls when a failover connection is made.
It does not, however, retain any session settings established through SQL statements. This can be done through
the Initialization String connection option, described in the individual driver chapters.

The driver retains the contents of parameter buffers, which can be important when failing over after a fetch. All
Select statements are re-prepared at the time the failover connection is made. All other statements are placed
in an allocated state.

If an error occurs while the driver is reestablishing a lost connection, the driver can fail the entire failover process
or proceed with the process as far as it can. For example, suppose an error occurred while reestablishing the
connection because a table for which the driver had a prepared statement did not exist on the alternate
connection. In this case, you may want the driver to notify your application of the error and proceed with the
failover process. You can choose how you want the driver to behave if errors occur during failover by setting
the Failover Granularity connection option.

During the failover process, your application may experience a short pause while the driver establishes a
connection on an alternate server. If your application is time-sensitive (a real-time customer order application,
for example) and cannot absorb this wait, you can set the "Failover preconnect" connection option to true.
Setting the Failover Preconnect option to true instructs the driver to establish connections to the primary server
and an alternate server at the same time. Your application uses the first connection that is successfully
established. If this connection to the database is lost at a later time, the driver saves time in reestablishing the
connection on the server to which it fails over because it can use the spare connection in its failover process.

This pre-established failover connection is not used by the driver until the driver determines that it needs to fail
over. If the server to which the driver is connected or the network equipment through which the connection is
routed is configured with a timeout, the pre-configured failover connection could time out. The pre-configured
failover connection can also be lost if the failover server is brought down and back up again. The driver tries
to establish the connection to the failover server again if the connection is lost.

See also
Connection failover on page 81
Failover Granularity on page 157
Failover Preconnect on page 159

83The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Using failover

Select connection failover
Select connection failover provides failover protection for the following types of connections:

• New connections, in the same way as described in "Connection failover"

• Lost connections, in the same way as described in "Extended connection failover"

In addition, the driver can recover work in progress because it keeps track of the last Select statement the
application executed on each Statement handle, including how many rows were fetched to the client. For
example, if the database had only processed 500 of 1,000 rows requested by a Select statement when the
connection was lost, the driver would reestablish the connection to an alternate server, re-execute the Select
statement, and position the cursor on the next row so that the driver can continue fetching the balance of rows
as if nothing had happened.

Performance, however, is a factor when considering whether to use Select mode. Select mode incurs additional
overhead when tracking what rows the application has already processed.

The driver only recovers work requested by Select statements. You must explicitly restart the following types
of statements after a failover occurs:

• Insert, Update, or Delete statements

• Statements that modify the connection state, for example, SET or ALTER SESSION statements

• Objects stored in a temporary tablespace or global temporary table

• Partially executed stored procedures and batch statements

When in manual transaction mode, no statements are rerun if any of the operations in the transaction were
Insert, Update, or Delete. This is true even if the statement in process at the time of failover was a Select
statement.

By default, the driver verifies that the rows that are restored match the rows that were originally fetched and,
if they do not match, generates an error warning your application that the Select statement must be reissued.
By setting the Failover Granularity connection option, you can customize the driver to ignore this check altogether
or fail the entire failover process if the rows do not match.

When the row comparison does not agree, the default behavior of Failover Granularity returns a SQL state of
40003 and an error message similar to:

Unable to position to the correct row after a successful failover attempt to
AlternateServer: 'HOSTNAME=Server4:PORTNUMBER= 1521:SERVICENAME=test'. You must reissue

the select statement.

If you have configured Failover Granularity to fail the entire failover process, the driver returns a SQL state of
08S01 and an error message similar to:

Your connection has been terminated and attempts to complete the failover process to the
following Alternate Servers have failed: AlternateServer: 'HOSTNAME=Server4:PORTNUMBER=
1521:SERVICENAME=test'. All active transactions have been rolled back.

See also
Connection failover on page 81
Extended connection failover on page 82

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.284

Chapter 4: Using the driver

Guidelines for primary and alternate servers
SQL Server databases provide advanced database replication technologies through the AlwaysOn feature.
The failover functionality provided by the drivers does not require AlwaysOn, but can work with this technology
to provide comprehensive failover protection. To ensure that failover works correctly, alternate servers should
mirror data on the primary server or be part of a configuration where multiple database nodes share the same
physical data.

Using client load balancing
Client load balancing helps distribute new connections in your environment so that no one server is overwhelmed
with connection requests. When client load balancing is enabled, the order in which primary and alternate
database servers are tried is random. For example, suppose that client load balancing is enabled as shown in
the following illustration:

First, Database Server B is tried (1). Then, Database Server C may be tried (2), followed by a connection
attempt to Database Server A (3). In contrast, if client load balancing were not enabled in this scenario, each
database server would be tried in sequential order, primary server first, then each alternate server based on
its entry order in the alternate servers list.

Client load balancing is controlled by the Load Balancing connection option. For details on configuring client
load balancing, see the appropriate driver chapter in this book.

See also
Load Balancing on page 171

85The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Using failover

Using Connection Retry
Connection retry defines the number of times the driver attempts to connect to the primary server and, if
configured, alternate database servers after the initial unsuccessful connection attempt. It can be used with
connection failover, extended connection failover, and select failover. Connection retry can be an important
strategy for system recovery. For example, suppose you have a power failure in which both the client and the
server fails. When the power is restored and all computers are restarted, the client may be ready to attempt a
connection before the server has completed its startup routines. If connection retry is enabled, the client
application can continue to retry the connection until a connection is successfully accepted by the server.

Connection retry can be used in environments that have only one server or can be used as a complementary
feature with connection failover in environments with multiple servers.

Using the connection options Connection Retry Count and Connection Retry Delay, you can specify the number
of times the driver attempts to connect and the time in seconds between connection attempts. For details on
configuring connection retry, see "Configuring failover-related options."

See also
Connection Retry Count on page 148
Connection Retry Delay on page 148
Configuring failover-related options on page 86

Configuring failover-related options
The following table summarizes how failover-related connection options work with the driver. See "Connection
option descriptions" for details about configuring the options. The step numbers in the table refer the procedure
that follows the table

Table 3: Summary: Failover and Related Connection Options

CharacteristicOption

One or multiple alternate database servers. An IP address or server name
identifying each server is required.

Default: None

Alternate Servers
(AlternateServers)

(See step 1 on page 88)

Number of times the driver retries the primary database server, and if specified,
alternate servers until a successful connection is established.

Default: 0

Connection Retry Count
(ConnectionRetryCount)

(See step 5 on page 89)

Wait interval, in seconds, between connection retry attempts when the Connection
Retry Count option is set to a positive integer.

Default: 3

Connection Retry Delay
(ConnectionRetryDelay)

(See step 6 on page 89)

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.286

Chapter 4: Using the driver

CharacteristicOption

Determines whether the driver fails the entire failover process or continues with
the process if errors occur while trying to reestablish a lost connection.

If set to 0 (Non-Atomic), the driver continues with the failover process and posts
any errors on the statement on which they occur.

If set to 1 (Atomic) the driver fails the entire failover process if an error is generated
as the result of anything other than executing and repositioning a Select statement.
If an error is generated as a result of repositioning a result set to the last row
position, the driver continues with the failover process, but generates a warning
that the Select statement must be reissued.

If set to 2 (Atomic Including Repositioning), the driver fails the entire failover
process if any error is generated as the result of restoring the state of the
connection or the state of work in progress.

If set to 3 (Disable Integrity Check), the driver does not verify that the rows that
were restored during the failover process match the original rows. This value
applies only when Failover Mode is set to 2 (Select).

Default: 0 (Non-Atomic)

Failover Granularity
(FailoverGranularity)

(See step 3 on page 88)

Specifies the type of failover method the driver uses.
If set to 0 (Connection), the driver provides failover protection for new connections
only.

If set to 1 (Extended Connection), the driver provides failover protection for new
and lost connections, but not any work in progress.

If set to 2 (Select), the driver provides failover protection for new and lost
connections. In addition, it preserves the state of work performed by the last Select
statement executed.

Default: 0 (Connection)

Failover Mode
(FailoverMode)

(See step 2 on page 88)

87The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Using failover

CharacteristicOption

Specifies whether the driver tries to connect to the primary and an alternate server
at the same time.
If set to 0 (Disabled), the driver tries to connect to an alternate server only when
failover is caused by an unsuccessful connection attempt or a lost connection.
This value provides the best performance, but your application typically
experiences a short wait while the failover connection is attempted.

If set to 1 (Enabled), the driver tries to connect to the primary and an alternate
server at the same time. This can be useful if your application is time-sensitive
and cannot absorb the wait for the failover connection to succeed.

Default: 0 (Disabled)

Failover Preconnect
(FailoverPreconnect)

(See step 4 on page 88)

Determines whether the driver uses client load balancing in its attempts to connect
to the database servers (primary and alternate). You can specify one or multiple
alternate servers by setting the Alternate Servers option.

If set to 1 (Enabled), the driver uses client load balancing and attempts to connect
to the database servers (primary and alternate servers) in random order.

If set to 0 (Disabled), the driver does not use client load balancing and connects
to each server based on their sequential order (primary server first, then, alternate
servers in the order they are specified).

Default: 0 (Disabled)

Load Balancing
(LoadBalancing)

(See step 7 on page 89)

1. To configure connection failover, you must specify one or more alternate database servers that are tried
at connection time if the primary server is not accepting connections. To do this, use the Alternate Servers
connection option. Connection attempts continue until a connection is successfully established or until all
the database servers in the list have been tried once (the default).

2. Choose a failover method by setting the Failover Mode connection option. The default method is Connection
(FailoverMode=0).

3. If Failover Mode is Extended Connection (FailoverMode=1) or Select (FailoverMode=2), set the Failover
Granularity connection option to specify how you want the driver to behave if errors occur while trying to
reestablish a lost connection. The default behavior of the driver is Non-Atomic (FailoverGranularity=0),
which continues with the failover process and posts any errors on the statement on which they occur. Other
values are:

Atomic (FailoverGranularity=1): the driver fails the entire failover process if an error is generated as
the result of anything other than executing and repositioning a Select statement. If an error is generated as
a result of repositioning a result set to the last row position, the driver continues with the failover process,
but generates a warning that the Select statement must be reissued.

Atomic including Repositioning (FailoverGranularity=2): the driver fails the entire failover process if
any error is generated as the result of restoring the state of the connection or the state of work in progress.

Disable Integrity Check (FailoverGranularity=3): the driver does not verify that the rows restored
during the failover process match the original rows. This value applies only when Failover Mode is set to
Select (FailoverMode=2).

4. Optionally, enable the Failover Preconnect connection option (FailoverPreconnect=1) if you want the
driver to establish a connection with the primary and an alternate server at the same time. This value applies
only when Failover Mode is set to Extended Connection (FailoverMode=1) or Select (FailoverMode=2).
The default behavior is to connect to an alternate server only when failover is caused by an unsuccessful
connection attempt or a lost connection (FailoverPreconnect=0).

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.288

Chapter 4: Using the driver

5. Optionally, specify the number of times the driver attempts to connect to the primary and alternate database
servers after the initial unsuccessful connection attempt. By default, the driver does not retry. To set this
feature, use the Connection Retry Count connection option.

6. Optionally, specify the wait interval, in seconds, between attempts to connect to the primary and alternate
database servers. The default interval is 3 seconds. To set this feature, use the Connection Retry Delay
connection option.

7. Optionally, specify whether the driver will use client load balancing in its attempts to connect to primary and
alternate database servers. If load balancing is enabled, the driver uses a random pattern instead of a
sequential pattern in its attempts to connect. The default value is not to use load balancing. To set this
feature, use the Load Balancing connection option.

See also
Connection option descriptions on page 129

A connection string example
The following connection string configures the driver to use connection failover in conjunction with some of its
optional features.

DSN=AcctSQLServer;AlternateServers=(HostName=mySQLServer:PortNumber=1433:Database=Accounting,
HostName=255.201.11.24:PortNumber=1434:Database=Accounting);
ConnectionRetryCount=4;ConnectionRetryDelay=5;LoadBalancing=1;FailoverMode=0

Specifically, this connection string configures the driver to use two alternate servers as connection failover
servers, to attempt to connect four additional times if the initial attempt fails, to wait five seconds between
attempts, to try the primary and alternate servers in a random order, and to attempt reconnecting on new
connections only. The additional connection information required for the alternate servers is specified in the
data source AcctSQLServer.

An odbc.ini file example
To configure the 32-bit driver to use connection failover in conjunction with some of its optional features in your
odbc.ini file, you could set the following connection string attributes:

Driver=ODBCHOME/lib/ivsqlsxx.so
Description=DataDirect SQL Server Wire Protocol driver
...
AlternateServers=(HostName=mySQLServer:PortNumber=1433:Database=Accounting,
HostName=255.201.11.24:PortNumber=1434:Database=Accounting)
...
ConnectionRetryCount=4
ConnectionRetryDelay=5
...
LoadBalancing=0
...
FailoverMode=1
...
FailoverPreconnect=1
...

Specifically, this odbc.ini configuration tells the driver to use two alternate servers as connection failover
servers, to attempt to connect four additional times if the initial attempt fails, to wait five seconds between
attempts, to try the primary and alternate servers in sequential order (do not use load balancing), to attempt
reconnecting on new and lost connections, and to establish a connection with the primary and alternate servers
at the same time.

89The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Using failover

Using security
The driver supports the following security features:

• Authentication is the process of identifying a user.

• Data encryption is the conversion of data into a form that cannot be easily understood by unauthorized
users.

Authentication
On most computer systems, a password is used to prove a user's identity. This password often is transmitted
over the network and can possibly be intercepted by malicious hackers. Because this password is the one
secret piece of information that identifies a user, anyone knowing a user's password can effectively be that
user. Authentication methods protect the identity of the user.

The driver supports the following authentication methods:

• User ID/password authentication authenticates the user to the database using a database user name and
password.

• Client authentication uses the user ID and password of the user logged onto the system on which the driver
is running to authenticate the user to the database. The database server relies on the client to authenticate
the user and does not provide additional authentication.

• Kerberos authentication is a trusted third-party authentication service that verifies user identities. The SQL
Server Wire Protocol driver supports both Windows Active Directory Kerberos and MIT Kerberos
implementations.

• NTLM authentication authenticates clients to the database through a challenge-response authentication
mechanism that enables clients to prove their identities without sending a database password to the server.
The driver supports NTLMv1 authentication on Windows clients.

• Azure Active Directory Authentication authenticates the user to the Azure SQL Database data stores using
an Active Directory user name and password.

• Access token authentication authenticates the user to the database using an access token and a pre-connect
attribute.

Kerberos authentication
If you are using Kerberos, verify that your environment meets the requirements listed in the following table
before you configure the driver for Kerberos authentication.

Table 4: Kerberos Authentication Requirements for the SQL Server Wire Protocol Driver

RequirementsComponent

The database server must be administered by the same domain controller that administers
the client and must be running Microsoft SQL Server 2000 Enterprise Edition (64-bit)
Service Pack 2 or higher versions.

Database server

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.290

Chapter 4: Using the driver

RequirementsComponent

The Kerberos server is the machine where the user IDs for authentication are
administered. The Kerberos server is also the location of the Kerberos KDC. Network
authentication must be provided by Windows Active Directory on Windows 2000 Server
Service Pack 3 or higher versions.

Kerberos server

The client must be administered by the same domain controller that administers the
database server.

Client

Kerberos authentication can take advantage of the user name and password maintained by the operating
system to authenticate users to the database or use another set of user credentials specified by the application.

The Kerberos method requires knowledge of how to configure your Kerberos environment. This method supports
both Windows Active Directory Kerberos and MIT Kerberos environments.

To use Kerberos authentication, the application user first must obtain a Kerberos Ticket Granting Ticket (TGT)
from the Kerberos server. The Kerberos server verifies the identity of the user and controls access to services
using the credentials contained in the TGT.

If the application uses Kerberos authentication from a UNIX/Linux client, the user must explicitly obtain a TGT.
To obtain a TGT explicitly, the user must log onto the Kerberos server using the kinit command. For example,
the following command requests a TGT from the server with a lifetime of 10 hours, which is renewable for 5
days:

kinit -l 10h -r 5d user

where user is the application user.

Refer to your Kerberos documentation for more information about using the kinit command and obtaining TGTs
for users.

If the application uses Kerberos authentication from a Windows client, the application user does not
explicitly need to obtain a TGT. Windows Active Directory automatically obtains a TGT for the user.

Access token authentication
The driver supports the use of a pre-connection attribute that allows authentication with an access token
obtained from a third-party application. The access token authentication method is available programmatically
only.

To use the pre-connection SQL_COPT_SS_ACCESS_TOKEN attribute, set it to the ACCESSTOKEN pointer as
follows:

typedef struct AccessToken
{

SQLUINTEGER size;
SQLCHAR data[];

} ACCESSTOKEN;
...

91The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Using security

The access token comprises length of the token followed by bytes of opaque data. The token must be expanded
with a 0 padding byte after each byte of data. The token must be in LittleEndian format and must not contain
any NULL terminator. If an access token value is specified, then it will take precedence over other available
authentication methods.

Note: Access tokens have a specified validity after generation. This can be configured on the server. If
connected successfully, the session is maintained. If disconnected after the configured validity, then a new
token is required to reconnect.

The following example uses the DSN-less format and includes the options for connecting with the access token
flow.

#define SQL_COPT_SS_ACCESS_TOKEN 1256
...
SQLCHAR connString[]="Driver=DataDirect 8.0 SQL Server Wire Protocol;
HostName=myserver.database.windows.net;PortNumber=1234;Database=testdb";
SQLCHAR AccessToken="ey0jx12cd34efg5klm6543no32pqr10";
SQLUINTEGER dataSize=2*strlen(accessToken);
AccessToken*pAccToken=malloc(sizeof(ACCESSTOKEN)+dataSize);
pAccToken->size=dataSize;
for(int i=0,j=0;i<dataSize;i+=2,j++)

{
pAccToken->data[i]=accessToken[j];
pAccToken->data[i+1]=0;

}
SQLSetConnectAttr(hdbc,SQL_COPT_SS_ACCESS_TOKEN,(SQLPOINTER)pAccToken,SQL_IS_POINTER);
SQLDriverConnect(hdbc,NULL,connString,SQL_NTS,NULL,0,NULL,SQL_DRIVER_NOPROMPT);
free(pAccToken);

Azure Active Directory authentication
The driver supports Azure Active Directory authentication (Azure AD). Azure AD authentication is an alternative
to SQL Server Authentication that allows administrators to centrally manage user permissions to Azure SQL
Database data stores. When Azure AD authentication is enabled, all communications to the service are
encrypted.

To configure the driver to use Azure AD authentication:

• Set the Authentication Method option to 13 (Active Directory Password).

• Set the Trust Store connection option to specify the absolute path of the digital certificate file for the root
CA certificates. The driver requires these certificates to maintain a secure connection.

Note: For testing purposes, you can disable the truststore requirement by setting the Validate Server
Certificate to 0 (disabled). Disabling the Validate Server Certificate option leaves your connection vulnerable
to man-in-the-middle attacks; therefore, it is not recommended for extended use.

• Set the Host Name In Certificate option to specify the host name for SSL certificate validation. For example,
*.database.windows.net.

• Set the User Name option to specify your Active Directory username using the userid@domain.com
format.

• Set the Password option to specify your Active Directory password.

• Specify values for minimum required options for establishing a connection:

• Set the Host Name option to specify either the IP address in IPv4 or IPv6 format, or the server name for
your Azure server. For example, your_server.database.windows.net.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.292

Chapter 4: Using the driver

• Set the Port Number option to specify the TCP port of the primary database server that is listening for
connections to the database.

• Set Database option to specify the name of the database to which you want to connect.

• If using data sources, set the Data Source Name to specify the name of your data source.

For example, the following is a DSN-less connection string with only the required options for making a connection
using Azure AD authentication:

DRIVER={DataDirect 8.0 SQL Server Wire Protocol};AM=13;DB=SQLSdb1;
HOST=myserver.database.windows.net;HNIC=*.database.windows;PORT=1433;
TS=\<truststore_path>\ca-bundle.crt;VSC=1;UID=test@domain.com;PWD=secret;

The following example demonstrates a data source definition in the odbc.ini file with only the required options
for making a connection using Azure AD authentication:

[SQLServer Wire Protocol]
Driver=ODBCHOME/lib/ivsqls28.so
Description=DataDirect 8.0 SQL Server Wire Protocol
AuthenticationMethod=13
Database=SQLSdb1
HostName=myserver.database.windows.net
HostNameInCertificate=*.database.windows
LogonID=test@domain.com
Password=secret
PortNumber=1433
TrustStore=/<truststore_path>/ca-bundle.crt
ValidateServerCertificate=1

See also
Authentication Method on page 140
Trust Store on page 187
Host Name In Certificate on page 163
User Name on page 190
Password on page 175
Host Name on page 162
Port Number on page 176
Database on page 152
Data Source Name on page 151

Summary of authentication-related options
The following table summarizes how authentication-related connection options work with the drivers. The
connection options are listed alphabetically by the GUI name that appears on the driver Setup dialog box. The
connection string attribute name is listed in parentheses. See "Connection option descriptions" for details about
configuring the options.

93The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Using security

Table 5: Summary: Authentication Connection Options

DescriptionOption

Specifies the method the driver uses to authenticate the user to the server when
a connection is established.

If set to 1 (Encrypt Password), the driver sends the user ID in clear text and an
encrypted password to the server for authentication.

If set to 4 (Kerberos Authentication), the driver uses Kerberos authentication.
This method supports bothWindows Active Directory Kerberos andMIT Kerberos
environments.

Setting this value to 4 also enables NTLMv2 and NTLMv1 authentication on
Windows platforms. The protocol used for a connection is determined by the
local security policy settings for the client.

(UNIX and Linux only) If set to 9 on Linux and UNIX platforms, the driver uses
NTLMv1 or NTLMv2 authentication. The driver determines which protocol to use
based on the size of the password provided. For passwords 14 bytes or less, the
driver uses NTLMv1; otherwise, the driver uses NTLMv2. To connect to the
database, users must supply the Windows User Id, Password, and, in some
cases, Domain to the driver.

(UNIX and Linux only) If set to 10, the driver uses NTLMv2 authentication. To
connect to the database, users must supply the Windows User Id, Password,
and, in some cases, Domain to the driver.

If set to 13 (Active Directory Password), the driver uses Azure Active Directory
(Azure AD) authentication when establishing a connection to an Azure SQL
Database data store. All communications to the service are encrypted using SSL.

Default: 1 (Encrypt Password)

Authentication Method
(AuthenticationMethod)

The name of the GSS client library that the driver uses to communicate with the
Key Distribution Center (KDC).

Default: native (The driver uses the GSS client shipped with the operating
system.)

GSS Client Library
(GSSClient)

The default user ID that is used to connect to your database.

Default: None

User Name (LogonID)

See also
Connection option descriptions on page 129

Connection string examples for configuring authentication
The following connection string configures the SQL Server Wire Protocol driver to use authentication, specifically
Kerberos authentication. The examples contains the connection options necessary to configure Kerberos
authentication as well as the minimum options required to establish a connection.

DSN=AcctSQLServer;HostName=AccountingSQLServer;AuthenticationMethod=4;
Database=Accounting;GSSClient=native;PortNumber=1433;UID=JohnSmith

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.294

Chapter 4: Using the driver

odbc.ini file examples for configuring authentication
The following example odbc.ini file configures the 32-bit SQL ServerWire Protocol driver to use authentication,
specifically Kerberos authentication. The examples contains the connection options necessary to configure
Kerberos authentication as well as the minimum options required to establish a connection.

Driver=ODBCHOME/lib/ivsqlsxx.so
Description=DataDirect SQL Server Wire Protocol driver
...
AuthenticationMethod=4
...
Database=Accounting
...
GSSClient=native
...
HostName=AccountingSQLSServer
...
PortNumber=1433
...
UID=JohnSmith
...

Data encryption across the network
If your database connection is not configured to use data encryption, data is sent across the network in a format
that is designed for fast transmission and can be decoded by interceptors, given some time and effort. For
example, text data is often sent across the wire as clear text. Because this format does not provide complete
protection from interceptors, you may want to use data encryption to provide a more secure transmission of
data.

For example, you may want to use data encryption in the following scenarios:

• You have offices that share confidential information over an intranet.

• You send sensitive data, such as credit card numbers, over a database connection.

• You need to comply with government or industry privacy and security requirements.

Your Progress DataDirect for ODBC driver supports Transport Layer Security (TLS) and Secure Sockets Layer
(SSL). TLS/SSL are industry-standard protocols for sending encrypted data over database connections. TLS/SSL
secures the integrity of your data by encrypting information and providing client/server authentication.

Note: Data encryption may adversely affect performance because of the additional overhead (mainly CPU
usage) required to encrypt and decrypt data.

TLS/SSL encryption
TLS/SSL works by allowing the client and server to send each other encrypted data that only they can decrypt.
TLS/SSL negotiates the terms of the encryption in a sequence of events known as the handshake. During the
handshake, the driver negotiates the highest TLS/SSL protocol available. The result of this negotiation determines
the encryption cipher suite to be used for the TLS/SSL session. The driver supports the following protocols
using OpenSSL cipher suites:

• TLS v1.2, TLS v1.1, TLS v1.0

• SSL v3, SSL v2

95The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Using security

The encryption cipher suite defines the type of encryption that is used for any data exchanged through an
TLS/SSL connection. Some cipher suites are very secure and, therefore, require more time and resources to
encrypt and decrypt data, while others provide less security, but are also less resource intensive.

The handshake involves the following types of authentication:

• TLS/SSL server authentication requires the server to authenticate itself to the client.

• TLS/SSL client authentication is optional and requires the client to authenticate itself to the server after the
server has authenticated itself to the client.

Refer to "SSL encryption cipher suites" in the Progress DataDirect for ODBC Drivers Reference for a list of the
encryption cipher suites supported by the drivers.

Certificates
SSL requires the use of a digitally-signed document, an x.509 standard certificate, for authentication and the
secure exchange of data. The purpose of this certificate is to tie the public key contained in the certificate
securely to the person/company that holds the corresponding private key. Your Progress DataDirect for ODBC
drivers supports many popular formats. Supported formats include:

• DER Encoded Binary X.509

• Base64 Encoded X.509

• PKCS #12 / Personal Information Exchange

TLS/SSL server authentication
When the client makes a connection request, the server presents its certificate for the client to accept or deny.
The client checks the issuer of the certificate against a list of trusted Certificate Authorities (CAs) whose root
certificates reside in one or both of the following stores on the client:

• On Windows operating systems: A permanent storage known asWindows certificate store. To learn how
to import the required root certificates into the Windows certificate store, see "Importing root certificates into
the Windows certificate store."

• On both Windows and non-Windows operating systems: An encrypted file known as truststore file. Most
truststore files are password-protected. The driver must be able to locate the truststore file and unlock it
with the appropriate password. Two connection options are available to the driver to provide this information:
Trust Store (Truststore) and Trust Store Password (TruststorePassword). The value of Trust Store is a
pathname that specifies the location of the truststore file. The value of Trust Store Password is the password
required to access the contents of the truststore file.

Note: To allow the client to use TLS/SSL server authentication without storing the truststore file on the
disk, you can specify the contents of the root certificates using the Trust Store connection option. Alternatively,
you can use the pre-connection attribute, SQL_COPT_INMEMORY_TRUSTSTORECERT, to specify the certificate
content. Formore information, see "Trust Store" and "Using SQL_COPT_INMEMORY_TRUSTSTORECERT".

If the server certificate matches a root certificate in either of the stores, an encrypted connection is established
between the client and the server. If the certificate does not match, the connection fails and the client generates
an error.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.296

Chapter 4: Using the driver

Alternatively, you can configure the driver to trust any certificate sent by the server, even if the issuer is not a
trusted CA. Allowing a driver to trust any certificate sent from the server is useful in test environments because
it eliminates the need to specify truststore information on each client in the test environment. Validate Server
Certificate (ValidateServerCertificate), another connection option, allows the driver to accept any certificate
returned from the server regardless of whether the issuer of the certificate is a trusted CA.

Finally, the connection option, Host Name In Certificate (HostNameInCertificate), allows an additional method
of server verification. When a value is specified for Host Name In Certificate, it must match the host name of
the server, which has been established by the administrator. This prevents malicious intervention between the
client and the server and ensures that the driver is connecting to the server that was requested.

The following examples show how to configure the driver to use data encryption via the TLS/SSL server
authentication.

Connection string
This connection string configures the driver to use the TLS/SSL server authentication method. In this
configuration, since ValidateServerCertificate=1, the driver validates the certificate sent by the server
and the host name specified by the HostNameInCertificate option.

DSN=SQLServer;EncryptionMethod=1;HostName=YourServer;
HostNameInCertificate=MySubjectAltName;PortNumber=1433;Database=SQLSdb1;
Truststore=TrustStoreName;TruststorePassword=TSXYZZY;
ValidateServerCertificate=1

odbc.ini
This odbc.ini file configures the driver to use the TLS/SSL server authentication method. In this configuration,
since ValidateServerCertificate=1, the driver validates the certificate sent by the server and the host
name specified by the HostNameInCertificate option.

Driver=ODBCHOME/lib/ivsqlsxx.so
Description=DataDirect SQL Server Wire Protocol driver
...
EncryptionMethod=1
...
HostName=YourServer
...
HostNameInCertificate=MySubjectAltName
...
PortNumber=1433
...
Database=SQLSdb1
...
Truststore=TrustStoreName
...
TruststorePassword=TSXYZZY
...
ValidateServerCertificate=1
...

See also
Importing root certificates into the Windows certificate store on page 98
Trust Store on page 187
Using SQL_COPT_INMEMORY_TRUSTSTORECERT on page 98

97The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Using security

Using SQL_COPT_INMEMORY_TRUSTSTORECERT
SQL_COPT_INMEMORY_TRUSTSTORECERT is a pre-connection attribute that specifies the contents of the
TLS/SSL certificates for TLS/SSL server authentication.When using SQL_COPT_INMEMORY_TRUSTSTORECERT,
the driver stores the certificate content in memory, which eliminates the need to store the truststore file on the
disk and lets applications use TLS/SSL server authentication without any disk dependency.

Note: The certificate content can be specified using the Trust Store (Truststore) connection option as well.
However, if it is specified using both Trust Store and SQL_COPT_INMEMORY_TRUSTSTORECERT,
SQL_COPT_INMEMORY_TRUSTSTORECERT takes precedence over Trust Store.

The following example shows how to specify the contents of 3 certificates using
SQL_COPT_INMEMORY_TRUSTSTORECERT:

SQLCHAR certificate[] = "
-----BEGIN CERTIFICATE-----12345abc-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----abcd123456-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----aabbcc11----END CERTIFICATE-----";
//The content of each certificate must be specified between -----BEGIN CERTIFICATE-----

and -----END CERTIFICATE-----. Also, the number of dashes (-----) must be the same
before and after both BEGIN CERTIFICATE and END CERTIFICATE.

...

SQLSetConnectAttr(dbc, SQL_COPT_INMEMORY_TRUSTSTORECERT, (SQLPOINTER)certificate,
SQL_IS_POINTER);

ret = SQLDriverConnect(dbc, NULL,
(SQLCHAR*)"DSN=SQL ServerWP_SSL;UID=jsmith;PWD=secret", SQL_NTS,
NULL, 0, NULL, SQL_DRIVER_NOPROMPT);

See also
Trust Store on page 187

Importing root certificates into the Windows certificate store
This section provides you with an overview of the steps required to import the required root certificates from a
truststore file to the Windows certificate store.

You can import root certificates using either the Certificate Import Wizard or a PowerShell script.

Importing root certificates using Certificate Import Wizard
To import root certificates using Certificate Import Wizard:

1. Double-click the trustore file. The Certificate Import Wizard window appears.

2. Select the Current User radio button; then, click Next.

3. Verify the file path and name available in the File name field; then, click Next.

4. Enter the password to unlock the truststore file; then, click Next.

5. Select the Automatically select the certificate store based on the type of certificate radio button; then,
click Next.

6. Click Finish.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.298

Chapter 4: Using the driver

The root certificates are imported into the following location in the Windows certificate store: Certificates >
Trusted Root Certification Authorities > Certificates.

Note: At times, Windows doesn't trust the imported certificates and imports them into Certificates >
Intermediate Certificate Authorities > Certificates. In such cases, manually copy the imported certificates
from Intermediate Certificate Authorities to Trusted Root Certification Authorities.

Importing root certificates using a PowerShell script
To import root certificates using a PowerShell script:

1. Open PowerShell in Administrator mode.

2. Type the following command; then, press ENTER.

Import-PfxCertificate -Password (ConvertTo-SecureString -String "truststore_password"
-AsPlainText -Force) -CertStoreLocation Cert:\LocalMachine\Root -FilePath

truststore_filepath

where:

truststore_password

is the password that is used to access the truststore file.

truststore_filepath

is the path to the directory where the truststore file is located.

The root certificates are imported into the following location in the Windows certificate store: Certificates >
Trusted Root Certification Authorities > Certificates.

Note: At times, Windows doesn't trust the imported certificates and imports them into Certificates >
Intermediate Certificate Authorities > Certificates. In such cases, manually copy the imported certificates
from Intermediate Certificate Authorities to Trusted Root Certification Authorities.

TLS/SSL client authentication
If the server is configured for TLS/SSL client authentication, the server asks the client to verify its identity after
the server identity has been proven. Similar to server authentication, the client sends a public certificate to the
server to accept or deny. The client stores its public certificate in an encrypted file known as a keystore. Public
certificates are paired with a private key in the keystore. To send the public certificate, the driver must access
the private key.

Like the truststore, most keystores are password-protected. The driver must be able to locate the keystore and
unlock the keystore with the appropriate password. Two connection options are available to the driver to provide
this information: Keystore (KeyStore) and Keystore Password (KeyStorePassword). The value of KeyStore is
a pathname that specifies the location of the keystore file. The value of Keystore Password is the password
required to access the keystore.

The private keys stored in a keystore can be individually password-protected. In many cases, the same password
is used for access to both the keystore and to the individual keys in the keystore. It is possible, however, that
the individual keys are protected by passwords different from the keystore password. The driver needs to know
the password for an individual key to be able to retrieve it from the keystore. An additional connection option,
Key Password (KeyPassword), allows you to specify a password for an individual key.

99The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Using security

Designating an OpenSSL Library
The driver uses OpenSSL library files (TLS/SSL Support Files) to implement cryptographic functions for data
sources or connections when encrypting data. By default, the driver is configured to use the most secure version
of the library installed with the product; however, you can designate a different version to address security
vulnerabilities or incompatibility issues with your current library. Although the driver is only certified against
libraries provided by Progress, you can also designate libraries that you supply. The methods described in this
section can be used to designate an OpenSSL library file.

Note: For the default library setting, current information, and a complete list of installed OpenSSL libraries,
refer to the readme file installed with your product.

File replacement
In the default configuration, the drivers use the OpenSSL library file located in the \drivers subdirectory for
Windows installations and the /lib subdirectory for UNIX/Linux. You can replace this file with a different library
to change the version used by the drivers. When using this method, the replacement file must contain both the
cryptographic and TLS/SSL libraries and use the same file name as the default library. For example, the latest
version of the library files use the following naming conventions:

Windows:

• Latest version: xxtls28.dll

• 1.0.2 and earlier versions: xxssl28.dll

UNIX/Linux:

• Latest version: libxxtls28.so [.sl]

• 1.0.2 and earlier versions: libxxssl28.so [.sl]

Designating a library in the default directory
If you are using the default directory structure for the product, you can use the AllowedOpenSSLVersions option
to designate a library. To use the AllowedOpenSSLVersions option, specify the version number of the library
you want to load. For example, AllowedOpenSSLVersions=1.0.2 loads the 1.0.2 version of OpenSSL
library using the following naming convention and format:

• Windows: install_dir\drivers\xxssl28.so [.sl]

• UNIX/Linux: install_dir/lib/libxxtls28.so [.sl]

Note that this method works only with OpenSSL library files that match Progress's naming convention and
relative installation location.

If you are using the GUI, this option is not exposed on the setup dialog. Instead, use the Extended Options
field on the Advanced tab to configure this option. For more information, see "AllowedOpenSSLVersions."

Designating the absolute path to a library
For libraries that do not use the default directory structure or file names, you must specify the absolute path to
your cryptographic library for the CryptoLibName (CryptoLibName) option and the absolute path to your TLS/SSL
library for the SSLLibName (SSLLibName) option. If you are using OpenSSL library files provided by Progress,
these libraries are combined into a single file; therefore, the value specified for these options should be the
same. For non-Progress library files, the libraries may use separate files, which would require specifying the
unique paths to the libeay32.dll (cryptographic library) and ssleay32.dll (TLS/SSL library) files.

If you are using a GUI, these options are not exposed on the setup dialog. Instead, use the Extended Options
field on the Advanced tab to configure these options. See "CryptoLibName" and "SSLLibName" for details.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2100

Chapter 4: Using the driver

See also
AllowedOpenSSLVersions on page 135
CryptoLibName on page 150
SSLLibName on page 186

Summary of Data Encryption Related Options
The following table summarizes how security-related connection options work with the drivers. The connection
options are listed alphabetically by the GUI name that appears on the driver Setup dialog box. The connection
string attribute name is listed in parentheses. See "Connection option descriptions" for details about configuring
the options.

Table 6: Summary: Data Encryption Connection Options

DescriptionOption

Determines which version of the OpenSSL library file the driver uses for data
encryption. Although the latest version of the OpenSSL library is the most secure,
some characteristics of the library can cause connections to certain databases
to fail. This option allows you to continue using older versions of the OpenSSL
library while you transition your environment to support the latest version.

Default: 1.1.1,1.0.2

AllowedOpenSSLVersions
(AllowedOpenSSLVersions)

Specifies the cryptographic protocols to use when SSL is enabled using the
Encryption Method connection option (EncryptionMethod=1 | 6 | 7).

Default: TLSv1.2, TLSv1.1, TLSv1

Crypto Protocol Version
(CryptoProtocolVersion)

The absolute path for the OpenSSL library file containing the cryptographic library
to be used by the data source or connection when SSL is enabled. The
cryptograpic library contains the implementations of cryptographic algorithms the
driver uses for data encryption.

Default: Empty string

CryptoLibName
(CryptoLibName)

The method the driver uses to encrypt data sent between the driver and the
database server.

If set to 0 (None), data is not encrypted.

If set to 1 (SSL), data is encrypted using the SSL protocols specified in the Crypto
Protocol Version connection option.

If set to 6 (RequestSSL), the login request and data are encrypted using SSL if
the server is configured for SSL. If the server is not configured for SSL, an
unencrypted connection is established. The SSL protocol used is determined by
the setting of the Crypto Protocol Version connection option.

If set to 7 (LoginSSL), the login request is encrypted using SSL regardless of
whether the server is configured for SSL. The data is encrypted using SSL if the
server is configured for SSL, and the data is unencrypted if the server is not
configured for SSL. The SSL protocol used is determined by the setting of the
Crypto Protocol Version connection option.

Default: 0 (None)

Encryption Method
(EncryptionMethod)

101The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Using security

DescriptionOption

A host name for certificate validation when SSL encryption is enabled
(Encryption Method=1 | 6 | 7) and validation is enabled (Validate Server
Certificate=1).

Default: None

Host Name In Certificate
(HostNameInCertificate)

The absolute path for the OpenSSL library file containing the SSL library to be
used by the data source or connection when SSL is enabled. The SSL library
contains the implementations of SSL protocols the driver uses for data encryption.

Default: Empty string

SSLLibName
(SSLLibName)

The absolute path of the truststore file to be used when SSL is enabled
(EncryptionMethod=1 | 6 | 7) and server authentication is used.

Default: None

Trust Store (Truststore)

Specifies the password that is used to access the truststore file when SSL is
enabled (EncryptionMethod=1 | 6 | 7) and server authentication is used.

Default: None

Trust Store Password
(TruststorePassword)

If enabled, the driver validates the certificate that is sent by the database server.
Any certificate from the server must be issued by a trusted CA in the truststore
file. If the Host Name In Certificate option is specified, the driver also validates
the certificate using a host name. The Host Name In Certificate option provides
additional security against man-in-the-middle (MITM) attacks by ensuring that
the server the driver is connecting to is the server that was requested.

If disabled, the driver does not validate the certificate that is sent by the database
server. The driver ignores any truststore information specified by the Trust Store
and Trust Store Password options.

Default: Enabled

Validate Server Certificate
(ValidateServerCertificate)

See also
Connection option descriptions on page 129

Connection string examples for configuring data encryption
The following connection strings configure the SQL Server Wire Protocol driver to use data encryption via the
SSL server authentication and SSL client authentication methods. These examples contain the connection
options necessary to configure data encryption as well as theminimum options required to establish a connection.

SSL Server Authentication
This connection string configures the driver to use the SSL Server Authentication method. In this configuration,
since ValidateServerCertificate=1, the driver validates the certificate sent by the server and the host
name specified by the HostNameInCertificate option.

DSN=AcctSQLServer;EncryptionMethod=1;HostName=YourServer;
HostNameInCertificate=MySubjectAltName;PortNumber=1433;
Truststore=TrustStoreName;TruststorePassword=TSXYZZY;
ValidateServerCertificate=1

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2102

Chapter 4: Using the driver

SSL Client Authentication
This connection string configures the driver to use the SSL Server Authentication method. In this configuration,
since ValidateServerCertificate=1, the driver validates the certificate sent by the server and the host
name specified by HostNameInCertificate.

DSN=AcctSQLServer;EncryptionMethod=1;HostName=YourServer;
HostNameInCertificate=MySubjectAltName;PortNumber=1433;
Keystore=KeyStoreName;KeystorePassword=YourKSPassword;
ValidateServerCertificate=1

odbc.ini file examples for configuring data encryption
The following example odbc.ini files demonstrate how to configure the 32-bit SQL Server Wire Protocol
driver to use data encryption via the SSL Server Authentication and SSL Client Authentication methods. These
examples include the necessary options to configure data encryption as well as the minimum options required
to establish a connection.

SSL Server Authentication
This odbc.ini file configures the driver to use the SSL Server Authentication method. In this configuration,
since ValidateServerCertificate=1, the driver validates the certificate sent by the server and the host
name specified by the HostNameInCertificate option.

Driver=ODBCHOME/lib/ivsqlsxx.so
Description=DataDirect SQL Server Wire Protocol driver
...
EncryptionMethod=1
...
HostName=YourServer
HostNameInCertificate=MySubjectAltName
...
PortNumber=1433
...
Truststore=TrustStoreName
TruststorePassword=TSXYZZY
...
ValidateServerCertificate=1
...

SSL Client Authentication
This odbc.ini file configures the driver to use the SSL Client Authentication method. In this configuration,
since ValidateServerCertificate=1, the driver validates the certificate sent by the server and the host
name specified by the HostNameInCertificate option.

Driver=ODBCHOME/lib/ivsqlsxx.so
Description=DataDirect SQL Server Wire Protocol driver
...
EncryptionMethod=1
...
HostName=YourServer
HostNameInCertificate=MySubjectAltName
...
PortNumber=1433
...
Truststore=TrustStoreName
TruststorePassword=TSXYZZY
...
ValidateServerCertificate=1
...

103The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Using security

Always Encrypted
Microsoft supports the Always Encrypted feature for Azure SQLDatabases and SQL Server databases beginning
with SQL Server 2016. Always Encrypted functionality provides improved security by storing sensitive data on
the server in an encrypted state. When sensitive data is queried by the application, the driver transparently
decrypts data from encrypted columns and returns them to the application. Conversely, when encrypted data
needs to be passed to the server, the driver transparently encrypts parameter values before sending them for
storage. As a result, sensitive data is visible only to authorized users of the application, not by those who
maintain the data. This reduces exposure to a number of potential vulnerabilities, including server-side security
breaches and access by database administrators who would not otherwise be authorized to view the data.

Always Encrypted functionality employs a column master key and column encryption key to process encrypted
data. The column encryption key is used to encrypt sensitive data in an encrypted column, while the column
master key is used to encrypt column encryption keys. To prevent server-side access to encrypted data, the
column master key is stored in a keystore that is separate from the server that contains the data. When Always
Encrypted is enabled, the driver uses the following steps to retrieve keys and negotiate the decryption of
encrypted data.

By design, data stored in encrypted columns cannot be accessed without first being retrieved and decrypted
by the driver. Although this restriction improves security, it also prevents literal values within these columns to
be referenced when issuing a statement. As a result, statements can only reference encrypted columns using
parameter markers.

When the application executes a parameterized statement with Always Encrypted enabled:

1. The driver executes a stored procedure to determine from the server whether there are any encrypted
columns referenced by the statement.

2. If any columns are encrypted, the driver retrieves the encrypted column metadata, encrypted column
encryption key, and the location of the column master key for each parameter to be encrypted.

3. The driver retrieves the column master key from the keystore; then uses it to decrypt the column encryption
key. After decryption, the column encryption key is cached in a decrypted state for subsequent operations.
See the following "Using keystore providers" section for details.

Note: You can dictate whether column encryption keys are persisted in the cache using the Key Cache
Time To Live (AEKeyCacheTTL) option. See "Caching column encryption keys" for more information.

4. The driver encrypts the parameters using the unencrypted column encryption key.

5. The driver sends the statement with encrypted values to the server for processing.

6. If applicable, the server returns the result set, along with the encryption algorithm information, encrypted
column encryption key, and location of the column master keys.

7. If the column encryption key is not cached, the driver retrieves column master key from the keystore; then
uses it to decrypt the column encryption key.

8. The driver decrypts the result set using the column encryption key and returns it to the application.

See also
Key Cache Time To Live on page 167
Caching column encryption keys on page 106

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2104

Chapter 4: Using the driver

Enabling Always Encrypted
You can configure the default behavior for Always Encrypted by specifying one of following values for the
Column Encryption connection option (ColumnEncryption):

• If set to Enabled, the driver fully supports Always Encrypted functionality. The driver transparently decrypts
result sets and returns them to the application. In addition, the driver transparently encrypts parameter
values that are associated with encrypted columns.

• If set to ResultsetOnly, the driver transparently decrypts result sets and returns them to the application.
Queries containing parameters that affect encrypted columns will return an error.

• If set to Disabled (default), the driver does not use Always Encrypted functionality. The driver does not
attempt to decrypt data from encrypted columns, but will return data as binary formatted cipher text. However,
statements containing parameters that reference encrypted columns are not supported and will return an
error.

The behavior specified for the Column Encryption option acts as the default for the connection; however, you
can override this behavior on a per-statement basis by specifying a value for the
SQL_SOPT_SS_COLUMN_ENCRYPTION statement attribute. By using this statement attribute, you can toggle
support for Always Encrypted to suit the applications requirements without having to establish a new connection.
This allows you to avoid some of the overhead associated with encrypting and decrypting data when accessing
tables that do not contain encrypted columns. To use the SQL_SOPT_SS_COLUMN_ENCRYPTION statement
attribute, the Column Encryption connection option must be set to Enabled or ResultsetOnly.

For details on configuring the Column Encryption option, see "Column Encryption." See the following section
for more information on using the statement attribute.

Depending on your keystore provider, you may need to further configure the driver to connect when Always
Encrypted is enabled (ColumnEncryption=Enabled | ResultsetOnly). See "Using keystore providers"
for details.

Enabling Always Encrypted programmatically
To override the default behavior for the connection or DSN when Always Encrypted is enabled
(ColumnEncryption=Enabled | ResultsetOnly), specify one of the following values for the
SQL_SOPT_SS_COLUMN_ENCRYPTION statement attribute in a SQL Statement:

Table 7: SQL_SOPT_SS_COLUMN_ENCRYPTION attribute values

BehaviorValues

Always Encrypted functionality is fully enabled. The driver
transparently decrypts result sets and returns them to the application.
In addition, the driver transparently encrypts parameter values that
are associated with encrypted columns.

SQL_CE_ENABLED (1)

Only decryption is enabled. The driver transparently decrypts result
sets and returns them to the application. Queries containing
parameters that affect encrypted columns will return an error.

SQL_CE_RESULTSETONLY (2)

Always Encrypted functionality is disabled. The driver does not attempt
to decrypt data from encrypted columns and returns the data as
binary-formatted cipher text. Execution of statements containing
parameters that affect encrypted columns are not supported and will
return an error.

SQL_CE_DISABLED (0)

105The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Using security

See also
Column Encryption on page 145
Using keystore providers on page 106

Using keystore providers
Keystore providers store the column master keys used for decrypting column encryption keys when using
Always Encrypted. The driver currently supports the Windows Certificate Store and Azure Key Vault providers.
Based on the encryption metadata received from the server, the driver dynamically determines which provider
to use for encrypting parameters or decrypting data in result sets.

Windows Certificate Store

The Windows Certificate Store is a local repository of certificates available only on Windows platforms. When
using this provider, the column master key is stored locally on the client machine, which reduces the need to
make calls over a network. The driver does not require any additional configuration to use the Windows
Certificate Store as a provider when Always Encrypted is enabled (ColumnEncryption=Enabled |
ResultsetOnly).

Azure Key Vault

The Azure Key Vault is a certificate repository hosted on Azure platforms. This provider offers several advantages
over the Windows Certificate Store, including the ability to access keys when the application is running on any
platform. In addition, keys do not need to be copied to and cached on the local machine. However, unless the
application is running on Azure, calls to the key vault must be made over aWAN, which can affect performance.
To access the column master key, the principal ID and Client Secret must be used to authenticate against the
Azure Key Vault. You can specify the principal ID and Client Secret using the following options:

• Key Store Principal Id (AEKeystorePrincipalId): Specifies the principal ID used to authenticate against the
Azure Key Vault. See "Key Store Principal Id" for a detailed description.

• Key Store Secret (AEKeystoreClientSecret): Specifies the Client Secret used to authenticate against the
Azure Key Vault. See "Key Store Secret" for a detailed description.

See also
Column Encryption on page 145
Key Store Principal Id on page 168
Key Store Secret on page 169

Caching column encryption keys
Caching column encryption keys improves performance by eliminating the overhead associated with fetching
and decrypting the keys for the same data multiple times. For security purposes, the driver empties keys from
the cache at the end of a connection; however, depending on the security needs of your environment, you may
not want to store keys in the cache at all. You can determine whether the driver caches column encryption
keys by specifying the following values for the Key Cache Time To Live (AEKeyCacheTTL) option:

• If set to -1, the driver caches column encryption keys on a per connection basis. The keys remain in the
cache until the connection is closed or the application exits.

• If set to 0, the driver does not cache column encryption keys.

By default, the driver caches column encryption keys on a per connection basis (AEKeyCacheTTL=-1). The
driver caches keys only whenAlways Encrypted is enabled (ColumnEncryption=Enabled | ResultsetOnly).
See "Key Cache Time To Live" for details.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2106

Chapter 4: Using the driver

See also
Key Cache Time To Live on page 167
Column Encryption on page 145

Connection string examples
The following connection string configures the driver to use Always Encrypted with the Windows Certificate
Store:

DRIVER={DataDirect 8.0 SQL Server Wire
Protocol};ColumnEncryption=Enabled;HostName=YourServer;PortNumber=1433;

The following connection string configures the driver to use Always Encrypted with the Azure Key Vault. Unlike
connections using Windows Certificate Store, using Azure Key Vault requires the Key Store Principal Id
(AEKeystorePrincipalId) and Key Store Secret (AEKeyStoreClientSecret) connection options.

DRIVER={DataDirect 8.0 SQL Server Wire
Protocol};AEKeystorePrincipalId=789a8b7c-6d5e-432f-1gh2-3ijk45678987;
AEKeyStoreClientSecret=ABcdEFg/hiJkLmNOPqR01tuVwXwyzYw2xwVUtsRQ=;ColumnEncryption=Enabled;
HostName=YourServer;PortNumber=1433;

See "Configuring and connecting to data sources" for more information on configuring and connecting to data
sources.

Note: The keystore provider used by the driver is based on the encryption metadata received from the server.
Specifying values for the Key Store Principal Id and Key Store Secret connections does not determine that the
driver uses the Azure Key Vault.

See also
Column Encryption on page 145
Host Name on page 162
Port Number on page 176
Key Store Principal Id on page 168
Key Store Secret on page 169
Configuring and connecting to data sources on page 40

Using DataDirect Connection Pooling

Supported on Windows, UNIX, and Linux only.

The SQL Server Wire Protocol driver supports DataDirect Connection Pooling on Windows, UNIX, and Linux
platforms. Connection pooling allows you to reuse connections rather than creating a new one every time the
driver needs to establish a connection to the underlying database. The driver enables connection pooling
without requiring changes to your client application.

Note: Connection pooling works only with connections that are established using SQLConnect or
SQLDriverConnect with the SQL_DRIVER_NO_PROMPT argument and only with applications that are
thread-enabled.

107The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Using DataDirect Connection Pooling

DataDirect connection pooling that is implemented by the DataDirect driver is different than connection pooling
implemented by the Windows Driver Manager. The Windows Driver Manager opens connections dynamically,
up to the limits of memory and server resources. DataDirect connection pooling, however, allows you to control
the number of connections in a pool through the Min Pool Size (minimum number of connections in a pool)
and Max Pool Size (maximum number of connections in a pool) connection options. In addition, DataDirect
connection pooling is cross-platform, allowing it to operate on UNIX and Linux. See "Summary of pooling-related
options" for details about how the connection options manage DataDirect connection pooling.

Important: On Windows, do not use connection pooling for the Windows Driver Manager at the same time
as DataDirect connection pooling.

See also
Summary of pooling-related options on page 110

Creating a connection pool
Each connection pool is associated with a specific connection string. By default, the connection pool is created
when the first connection with a unique connection string connects to the data source. The pool is populated
with connections up to the minimum pool size before the first connection is returned. Additional connections
can be added until the pool reaches the maximum pool size. If the Max Pool Size option is set to 10 and all
connections are active, a request for an eleventh connection has to wait in queue for one of the 10 pool
connections to become idle. The pool remains active until the process ends or the driver is unloaded.

If a new connection is opened and the connection string does not exactly match an existing pool, a new pool
must be created. By using the same connection string, you can enhance the performance and scalability of
your application.

Adding connections to a pool
A connection pool is created in the process of creating each unique connection string that an application uses.
When a pool is created, it is populated with enough connections to satisfy the minimum pool size requirement,
set by the Min Pool Size connection option. The maximum pool size is set by the Max Pool Size connection
option. If an application needs more connections than the number set by Min Pool Size, the driver allocates
additional connections to the pool until the number of connections reaches the value set by Max Pool Size.

Once the maximum pool size has been reached and no usable connection is available to satisfy a connection
request, the request is queued in the driver. The driver waits for the length of time specified in the Login Timeout
connection option for a usable connection to return to the application. If this time period expires and a connection
has not become available, the driver returns an error to the application.

A connection is returned to the pool when the application calls SQLDisconnect. Your application is still responsible
for freeing the handle, but this does not result in the database session ending.

Removing connections from a pool
A connection is removed from a connection pool when it exceeds its lifetime as determined by the Load Balance
Timeout connection option. In addition, DataDirect has created connection attributes described in the following
table to give your application the ability to reset connection pools. If connections are in use at the time of these
calls, they are marked appropriately. When SQLDisconnect is called, the connections are discarded instead
of being returned to the pool.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2108

Chapter 4: Using the driver

Table 8: Pool Reset Connection Attributes

DescriptionConnection Attribute

Calling SQLSetConnectAttr (SQL_ATTR_CLEAR_POOLS,
SQL_CLEAR_ALL_CONN_POOL) clears all the connection
pools associated with the driver that created the
connection.This is a write-only connection attribute. The driver
returns an error if SQLGetConnectAttr
(SQL_ATTR_CLEAR_POOLS) is called.

SQL_ATTR_CLEAR_POOLS Value:
SQL_CLEAR_ALL_CONN_POOL

Calling SQLSetConnectAttr (SQL_ATTR_CLEAR_POOLS,
SQL_CLEAR_CURRENT_CONN_POOL) clears the
connection pool that is associated with the current
connection.This is a write-only connection attribute. The driver
returns an error if SQLGetConnectAttr
(SQL_ATTR_CLEAR_POOLS) is called.

SQL_ATTR_CLEAR_POOLS Value:
SQL_CLEAR_CURRENT_CONN_POOL

Note: By default, if removing a connection causes the number of connections to drop below the number
specified in the Min Pool Size option, a new connection is not created until an application needs one.

Handling dead connections in a pool
What happens when an idle connection loses its physical connection to the database? For example, suppose
the database server is rebooted or the network experiences a temporary interruption. An application that
attempts to connect could receive errors because the physical connection to the database has been lost.

Your Progress DataDirect for ODBC driver handles this situation transparently to the user. The application does
not receive any errors on the connection attempt because the driver simply returns a connection from a
connection pool. The first time the connection handle is used to execute a SQL statement, the driver detects
that the physical connection to the server has been lost and attempts to reconnect to the server before executing
the SQL statement. If the driver can reconnect to the server, the result of the SQL execution is returned to the
application; no errors are returned to the application.

The driver uses connection failover option values, if they are enabled, when attempting this seamless
reconnection; however, it attempts to reconnect even if these options are not enabled. See "Connection failover"
for information about configuring the driver to connect to a backup server when the primary server is not
available.

Note: If the driver cannot reconnect to the server (for example, because the server is still down), an error is
returned indicating that the reconnect attempt failed, along with specifics about the reason the connection
failed.

The technique that Progress DataDirect uses for handling dead connections in connection pools allows for
maximum performance of the connection pooling mechanism. Some drivers periodically test the server with a
dummy SQL statement while the connections sit idle. Other drivers test the server when the application requests
the use of the connection from the connection pool. Both of these approaches add round trips to the database
server and ultimately slow down the application during normal operation.

See also
Connection failover on page 81

109The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Using DataDirect Connection Pooling

Connection pool statistics
Progress DataDirect has created a connection attribute to monitor the status of the Progress DataDirect for
ODBC connection pools. This attribute, which is described in the following table, allows your application to
fetch statistics for the pool to which a connection belongs.

Table 9: Pool Statistics Connection Attribute

DescriptionConnection Attribute

Calling SQLGetConnectAttr (SQL_ATTR_POOL_INF,
SQL_GET_POOL_INFO) returns a PoolInfoStruct that contains the
statistics for the connection pool to which this connection belongs.
This PoolInfoStruct is defined in qesqlext.h. For example:

SQLGetConnectAttr(hdbc, SQL_ATTR_POOL_INFO,
PoolInfoStruct *,
SQL_LEN_BINARY_ATTR(PoolInfoStruct), &len);

This is a read-only connection attribute. The driver returns an error if
SQLSetConnectAttr (SQL_ATTR_POOL_INFO) is called.

SQL_ATTR_POOL_INFO Value:
SQL_GET_POOL_INFO

Summary of pooling-related options
The following table summarizes how connection pooling-related connection options work with the drivers. See
"Connection option descriptions" for additional details about configuring the options.

Table 10: Summary: Connection Pooling Connection Options

CharacteristicOption

Specifies whether to use the driver’s connection pooling.

If set to 1 (Enabled), the driver uses connection pooling.

If set to 0 (Disabled), the driver does not use connection pooling.
Default: 0 (Disabled)

Connection Pooling (Pooling)

Determines whether the state of connections that are removed from the
connection pool for reuse by the application is reset to the initial configuration
of the connection.If set to 1 (Enabled), the state of connections removed
from the connection pool for reuse by an application is reset to the initial
configuration of the connection. Resetting the state can negatively impact
performance because additional commands must be sent over the network
to the server to reset the state of the connection.

If 0 (Disabled), the state of connections is not reset.

Default: 0 (Disabled)

Connection Reset
(ConnectionReset)

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2110

Chapter 4: Using the driver

CharacteristicOption

An integer value to specify the amount of time, in seconds, to keep
connections open in a connection pool.

If set to 0, inactive connections are kept open.

If set to x, inactive connections are closed after the specified number of
seconds passes.

Default: 0

Load Balance Timeout
(LoadBalanceTimeout)

An integer value to specify the maximum number of connections within a
single pool.

Default: 100

Max Pool Size (MaxPoolSize)

An integer value to specify the minimum number of connections that are
opened and placed in a connection pool when it is created. If set to 0, no
connections are opened in addition to the current existing connection.

Default: 0

Min Pool Size (MinPoolSize)

See also
Connection option descriptions on page 129

Using DataDirect Bulk Load

Supported on Windows, UNIX, and Linux only.

On Windows, UNIX, and Linux, the driver supports DataDirect Bulk Load when connected to databases that
are orgMicrosoft SQL Server 2000 and higher. This feature allows your application to send large numbers of
rows of data to a database. The driver sends the data to the database in a continuous stream instead of
numerous smaller database packets. Similar to batch operations, using bulk load improves performance because
far fewer network round trips are required. Bulk load bypasses the data parsing usually done by the database,
providing an additional performance gain over batch operations.

DataDirect Bulk Load requires a licensed installation of the drivers. If the drivers are installed with an evaluation
license, the bulk load feature is available for prototyping with your applications, but with limited scope. Contact
your sales representative or Progress DataDirect SupportLink for further information.

Because a bulk load operation may bypass data integrity checks, your application must ensure that the data
it is transferring does not violate integrity constraints in the database. For example, suppose you are bulk
loading data into a database table and some of that data duplicates data stored as a primary key, which must
be unique. The driver will not throw an exception to alert you to the error; your application must provide its own
data integrity checks.

Bulk load operations are accomplished by exporting the results of a query from a database into a
comma-separated value (CSV) file, a bulk load data file. The driver then loads the data from bulk load data file
into a different database. The file can be used by any DataDirect for ODBC driver. In addition, the bulk load data
file is supported by other DataDirect product lines that feature bulk loading, for example, a DataDirect Connect
for ADO.NET data provider that supports bulk load.

111The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Using DataDirect Bulk Load

Suppose that you had customer data on an SQL Server server and need to export it to a DB2 server. The
driver would perform the following steps:

1. Application using SQL Server Wire Protocol driver sends query to and receives results from SQL Server
server.

2. Driver exports results to bulk load data file.

3. Driver retrieves results from bulk load data file.

4. Driver bulk loads results on DB2 server.

Bulk Export and Load Methods
You can take advantage of DataDirect Bulk Load either through the Driver setup dialog or programmatically.

Applications that are already coded to use parameter array batch functionality can leverage DataDirect Bulk
Load features through the Enable Bulk Load connection option on the Bulk tab of the Driver setup dialog.
Enabling this option automatically converts the parameter array batch operation to use the database bulk load
protocol without any code changes to your application.

If you are not using parameter array batch functionality, the bulk operation buttons Export Table and Load
Table on the Bulk tab of the driver Setup dialog also allow you to use bulk load functionality without any code
changes. See "Bulk tab" for a description of the Bulk tab.

If you want to integrate bulk load functionality seamlessly into your application, you can include code to use
the bulk load functions exposed by the driver.

For your applications to use DataDirect Bulk Load functionality, they must obtain driver connection handles
and function pointers, as follows:

1. Use SQLGetInfo with the parameter SQL_DRIVER_HDBC to obtain the driver’s connection handle from
the Driver Manager.

2. Use SQLGetInfo with the parameter SQL_DRIVER_HLIB to obtain the driver’s shared library or DLL handle
from the Driver Manager.

3. Obtain function pointers to the bulk load functions using the function name resolution method specific to
your operating system. The bulk.c example program shipped with the drivers contains the function
resolveName that illustrates how to obtain function pointers to the bulk load functions.

This is detailed in the code samples that follow.

See also
Bulk tab on page 70

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2112

Chapter 4: Using the driver

Exporting data from a database
You can export data from a database in one of three ways:

• From a table by using the driver Setup dialog

• From a table by using DataDirect functions

• From a result set by using DataDirect statement attributes

From the DataDirect driver Setup dialog, select theBulk tab and click Export Table. See the driver configuration
chapter for a description of this procedure.

Your application can export a table using the DataDirect functions ExportTableToFile (ANSI application) or
ExportTableToFileW (Unicode application). The application must first obtain driver connection handles and
function pointers, as shown in the following example:

HDBC hdbc;
HENV henv;
void *driverHandle;
HMODULE hmod;
PExportTableToFile exportTableToFile;

char tableName[128];
char fileName[512];
char logFile[512];
int errorTolerance;
int warningTolerance;
int codePage;

/* Get the driver's connection handle from the DM.
This handle must be used when calling directly into the driver. */

rc = SQLGetInfo (hdbc, SQL_DRIVER_HDBC, &driverHandle, 0, NULL);
if (rc != SQL_SUCCESS) {

ODBC_error (henv, hdbc, SQL_NULL_HSTMT);
EnvClose (henv, hdbc);
exit (255);

}

/* Get the DM's shared library or DLL handle to the driver. */

rc = SQLGetInfo (hdbc, SQL_DRIVER_HLIB, &hmod, 0, NULL);
if (rc != SQL_SUCCESS) {

ODBC_error (henv, hdbc, SQL_NULL_HSTMT);
EnvClose (henv, hdbc);
exit (255);

}
exportTableToFile = (PExportTableToFile)
resolveName (hmod, "ExportTableToFile");

if (! exportTableToFile) {
printf ("Cannot find ExportTableToFile!\n");
exit (255);

}

rc = (*exportTableToFile) (
driverHandle,
(const SQLCHAR *) tableName,
(const SQLCHAR *) fileName,
codePage,
errorTolerance, warningTolerance,
(const SQLCHAR *) logFile);

if (rc == SQL_SUCCESS) {
printf ("Export succeeded.\n");

}
else {

113The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Using DataDirect Bulk Load

driverError (driverHandle, hmod);
}

Your application can export a result set using the DataDirect statement attributes SQL_BULK_EXPORT and
SQL_BULK_EXPORT_PARAMS.

The export operation creates a bulk load data file with a .csv extension in which the exported data is stored.
For example, assume that a source table named GBMAXTABLE contains four columns. The resulting bulk
load data file GBMAXTABLE.csv containing the results of a query would be similar to the following:

1,0x6263,"bc","bc"
2,0x636465,"cde","cde"
3,0x64656667,"defg","defg"
4,0x6566676869,"efghi","efghi"
5,0x666768696a6b,"fghijk","fghijk"
6,0x6768696a6b6c6d,"ghijklm","ghijklm"
7,0x68696a6b6c6d6e6f,"hijklmno","hijklmno"
8,0x696a6b6c6d6e6f7071,"ijklmnopq","ijklmnopq"
9,0x6a6b6c6d6e6f70717273,"jklmnopqrs","jklmnopqrs"
10,0x6b,"k","k"

A bulk load configuration file with and .xml extension is also created when either a table or a result set is
exported to a bulk load data file. See "The bulk load configuration file" for an example of a bulk load configuration
file.

In addition, a log file of events as well as external overflow files can be created during a bulk export operation.
The log file is configured through either the driver Setup dialog Bulk tab, the ExportTableToFile function, or the
SQL_BULK_EXPORT statement attribute. The external overflow files are configured through connection options;
see "External overflow files" for details.

See also
The bulk load configuration file on page 115
External overflow files on page 118

Bulk loading to a database
You can load data from the bulk load data file into the target database through the DataDirect driver Setup
dialog by selecting the Bulk tab and clicking Load Table. See "Bulk tab" for a description of this procedure.

Your application can also load data from the bulk load data file into the target database using the using the
DataDirect functions LoadTableFromFile (ANSI application) or LoadTableFromFileW (Unicode application).
The application must first obtain driver connection handles and function pointers, as shown in the following
example:

HDBC hdbc;
HENV henv;
void *driverHandle;
HMODULE hmod;
PLoadTableFromFile loadTableFromFile;
char tableName[128];
char fileName[512];
char configFile[512];
char logFile[512];
char discardFile[512];
int errorTolerance;
int warningTolerance;
int loadStart;
int loadCount;
int readBufferSize;

/* Get the driver's connection handle from the DM.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2114

Chapter 4: Using the driver

This handle must be used when calling directly into the driver.*/

rc = SQLGetInfo (hdbc, SQL_DRIVER_HDBC, &driverHandle, 0, NULL);
if (rc != SQL_SUCCESS) {

ODBC_error (henv, hdbc, SQL_NULL_HSTMT);
EnvClose (henv, hdbc);
exit (255);

}
/* Get the DM's shared library or DLL handle to the driver. */

rc = SQLGetInfo (hdbc, SQL_DRIVER_HLIB, &hmod, 0, NULL);
if (rc != SQL_SUCCESS) {

ODBC_error (henv, hdbc, SQL_NULL_HSTMT);
EnvClose (henv, hdbc);
exit (255);

}

loadTableFromFile = (PLoadTableFromFile)
resolveName (hmod, "LoadTableFromFile");

if (! loadTableFromFile) {
printf ("Cannot find LoadTableFromFile!\n");
exit (255);

}

rc = (*loadTableFromFile) (
driverHandle,
(const SQLCHAR *) tableName,
(const SQLCHAR *) fileName,
errorTolerance, warningTolerance,
(const SQLCHAR *) configFile,
(const SQLCHAR *) logFile,
(const SQLCHAR *) discardFile,
loadStart, loadCount,
readBufferSize);

if (rc == SQL_SUCCESS) {
printf ("Load succeeded.\n");

}
else {

driverError (driverHandle, hmod);
}

Refer to "DataDirect Bulk Load functions" in the Progress DataDirect for ODBC Drivers Reference for more
information on supported functions.

Use the BulkLoadBatchSize connection attribute to specify the number of rows the driver loads to the data
source at a time when bulk loading data. Performance can be improved by increasing the number of rows the
driver loads at a time because fewer network round trips are required. Be aware that increasing the number
of rows that are loaded also causes the driver to consume more memory on the client.

A log file of events as well as a discard file that contains rows rejected during the load can be created during
a bulk load operation. These files are configured through either the driver Setup dialog Bulk tab or the
LoadTableFromFile function.

The discard file is in the same format as the bulk load data file. After fixing reported issues in the discard file,
the bulk load can be reissued using the discard file as the bulk load data file.

See also
Bulk tab on page 70

The bulk load configuration file
A bulk load configuration file is created when either a table or a result set is exported to a bulk load data file.
This file has the same name as the bulk load data file, but with an .xml extension.

115The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Using DataDirect Bulk Load

The bulk load configuration file defines in its metadata the names and data types of the columns in the bulk
load data file. The file defines these names and data types based on the table or result set created by the query
that exported the data.

It also defines other data properties, such as length for character and binary data types, the character encoding
code page for character types, precision and scale for numeric types, and nullability for all types.

When a bulk load data file cannot read its configuration file, the following defaults are assumed:

• All data is read in as character data. Each value between commas is read as character data.

• The default character set is defined, on Windows, by the current Windows code page. On UNIX/Linux, it is
the IANAAppCodePage value, which defaults to 4.

For example, the format of the bulk load data file GBMAXTABLE.csv (discussed in "Exporting data from a
database") is defined by the bulk load configuration file, GBMAXTABLE.xml, as follows:

<?xml version="1.0" encoding="utf-8"?>
<table codepage="UTF-16LE" xsi:noNamespaceSchemaLocation=
"http://media.datadirect.com/download/docs/ns/bulk/BulkData.xsd" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance">

<row>
<column datatype="DECIMAL" precision="38" scale="0" nullable=

"false">INTEGERCOL</column>
<column datatype="VARBINARY" length="10" nullable=

"true">VARBINCOL</column>
<column datatype="VARCHAR" length="10" sourcecodepage="Windows-1252"

externalfilecodepage="Windows-1252" nullable="true">VCHARCOL</column>
<column datatype="VARCHAR" length="10" sourcecodepage="Windows-1252"

externalfilecodepage="Windows-1252" nullable="true">UNIVCHARCOL</column>
</row>

</table>

See also
Exporting data from a database on page 113

Bulk load configuration file schema
The bulk load configuration file is supported by an underlying XML Schema defined at:

http://media.datadirect.com/download/docs/ns/bulk/BulkData.xsd

The bulk load configuration file must conform to the bulk load configuration XML schema. Each bulk export
operation generates a bulk load configuration file in UTF-8 format. If the bulk load data file cannot be created
or does not comply with the XML Schema described in the bulk load configuration file, an error is generated.

Verification of the bulk load configuration file
You can verify the metadata in the configuration file against the data structure of the target database table.
This insures that the data in the bulk load data file is compatible with the target database table structure.

The verification does not check the actual data in the bulk load data file, so it is possible that the load can fail
even though the verification succeeds. For example, if you were to update the bulk load data file manually such
that it has values that exceed the maximum column length of a character column in the target table, the load
would fail.

Not all of the error messages or warnings that are generated by verification necessarily mean that the load will
fail. Many of the messages simply notify you about possible incompatibilities between the source and target
tables. For example, if the bulk load data file has a column that is defined as an integer and the column in the
target table is defined as smallint, the load may still succeed if the values in the source column are small enough
that they fit in a smallint column.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2116

Chapter 4: Using the driver

http://media.datadirect.com/download/docs/ns/bulk/BulkData.xsd

To verify the metadata in the bulk load configuration file through the DataDirect driver Setup dialog, select the
Bulk tab and click Verify. See "Bulk tab" for a description of this procedure.

Your application can also verify the metadata of the bulk load configuration file using the DataDirect functions
ValidateTableFromFile (ANSI application) or ValidateTableFromFileW (Unicode application). The application
must first obtain driver connection handles and function pointers, as shown in the following example:

HDBC hdbc;
HENV henv;
void *driverHandle;
HMODULE hmod;
PValidateTableFromFile validateTableFromFile;
char tableName[128];
char configFile[512];
char messageList[10240];
SQLLEN numMessages;
/* Get the driver's connection handle from the DM.

This handle must be used when calling directly into the driver. */
rc = SQLGetInfo (hdbc, SQL_DRIVER_HDBC, &driverHandle, 0, NULL);
if (rc != SQL_SUCCESS) {

ODBC_error (henv, hdbc, SQL_NULL_HSTMT);
EnvClose (henv, hdbc);
exit (255);

}/* Get the DM's shared library or DLL handle to the driver. */
rc = SQLGetInfo (hdbc, SQL_DRIVER_HLIB, &hmod, 0, NULL);
if (rc != SQL_SUCCESS) {

ODBC_error (henv, hdbc, SQL_NULL_HSTMT);
EnvClose (henv, hdbc);
exit (255);

}
validateTableFromFile = (PValidateTableFromFile)

resolveName (hmod, "ValidateTableFromFile");
if (!validateTableFromFile) {

printf ("Cannot find ValidateTableFromFile!\n");
exit (255);

}
messageList[0] = 0;
numMessages = 0;
rc = (*validateTableFromFile) (

driverHandle,
(const SQLCHAR *) tableName,
(const SQLCHAR *) configFile,
(SQLCHAR *) messageList,
sizeof (messageList),
&numMessages);

printf ("%d message%s%s\n", numMessages,
(numMessages == 0) ? "s" :
((numMessages == 1) ? " : " : "s : "),
(numMessages > 0) ? messageList : "");

if (rc == SQL_SUCCESS) {
printf ("Validate succeeded.\n");

}else {
driverError (driverHandle, hmod);

}

See also
Bulk tab on page 70

117The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Using DataDirect Bulk Load

Sample applications
Progress DataDirect provides a sample application that demonstrates the bulk export, verification, and bulk
load operations. This application is located in the \samples\bulk subdirectory of the product installation
directory along with a text file named bulk.txt. Please consult bulk.txt for instructions on using the sample
bulk load application.

A bulk streaming application is also provided in the \samples\bulkstrm subdirectory along with a text file
named bulkstrm.txt. Please consult bulkstrm.txt for instructions on using the bulk streaming application.

Character set conversions
It is most performance-efficient to transfer data between databases that use the same character sets. At times,
however, you might need to bulk load data between databases that use different character sets. You can do
this by choosing a character set for the bulk load data file that will accommodate all data. If the source table
contains character data that uses different character sets, then one of the Unicode character sets, UTF-8,
UTF-16BE, or UTF-16LE must be specified for the bulk load data file. A Unicode character set should also be
specified in the case of a target table uses a different character set than the source table to minimize conversion
errors. If the source and target tables use the same character set, that set should be specified for the bulk load
data file.

A character set is defined by a code page. The code page for the bulk load data file is defined in the configuration
file and is specified through either the Code Page option of the Export Table driver Setup dialog or through the
IANAAppCodePage parameter of the ExportTableToFile function.

For supported code page values, refer to "Code page values" in the Progress DataDirect for ODBC Drivers
Reference.

Any character conversion errors are handled based on the value of the Report Codepage Conversion Errors
connection option. See the individual driver chapters for a description of this option.

The configuration file may optionally define a second code page value for each character column
(externalfilecodepage). If character data is stored in an external overflow file (see "External overflow
files"), this second code page value is used for the external file.

See also
External overflow files on page 118

External overflow files
In addition to the bulk load data file, DataDirect Bulk Load can store bulk data in external overflow files. These
overflow files are located in the same directory as the bulk load data file. Different files are used for binary data
and character data. Whether or not to use external overflow files is a performance consideration. For example,
binary data is stored as hexadecimal-encoded character strings in the main bulk load data file, which increases
the size of the file per unit of data stored. External files do not store binary data as hex character strings, and,
therefore, require less space. On the other hand, more overhead is required to access external files than to
access a single bulk load data file, so each bulk load situation must be considered individually.

The value of the Bulk Binary Threshold connection option determines the threshold, in KB, over which binary
data is stored in external files instead of in the bulk load data file. Likewise, the Bulk Character Threshold
connection option determines the threshold for character data.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2118

Chapter 4: Using the driver

In the case of an external character data file, the character set of the file is governed by the bulk load
configuration file. If the bulk load data file is Unicode and the maximum character size of the source data is 1,
then the data is stored in its source code page. See "Character set conversions".

The file name of the external file contains the bulk load data file name, a six-digit number, and a ".lob" extension
in the following format: CSVfilename_nnnnnn.lob. Increments start at 000001.lob.

See also
Character set conversions on page 118

Limitations
• A bulk operation is not allowed in a manual transaction if it is not the first event.

• Once a bulk operation is started, any non-bulk operation is disallowed until the transaction is committed.

Summary of related options for DataDirect Bulk Load

DescriptionConnection Options: Bulk

The number of rows that the driver sends to the database at a time
during bulk operations. This value applies to all methods of bulk
loading.

Default: 1024

Batch Size (BulkLoadBatchSize)

The maximum size, in KB, of binary data that is exported to the bulk
data file.

If set to -1, all binary data, regardless of size, is written to the bulk
data file, not to an external file.

If set to 0, all binary data, regardless of size, is written to an external
file, not the bulk data file. A reference to the external file is written to
the bulk data file.

If set to x, any binary data exceeding this specified number of KB is
written to an external file, not the bulk data file. A reference to the
external file is written to the bulk data file.

Default: None

Bulk Binary Threshold
(BulkBinaryThreshold)

119The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Using DataDirect Bulk Load

DescriptionConnection Options: Bulk

The maximum size, in KB, of character data that is exported to the
bulk data file.

If set to -1, all character data, regardless of size, is written to the bulk
data file, not to an external file.

If set to 0, all character data regardless of size, is written to an external
file, not the bulk data file. A reference to the external file is written to
the bulk data file.

If set to x, any character data exceeding this specified number of KB
is written to an external file, not the bulk data file. A reference to the
external file is written to the bulk data file.

Default: -1

Bulk Character Threshold
(BulkCharacterThreshold)

Determines when the driver uses bulk load for insert, update, delete,
or batch operations. If the Enable Bulk Load option is set to 1 and the
number of rows affected by an insert, update, delete, or batch
operation exceeds the threshold specified by this option, the driver
uses SQL Server bulk load protocol to perform the operation.

If set to 0, the driver always uses bulk load to execute insert, update,
delete, or batch operations.

If set to x, the driver only uses bulk load if the Enable Bulk Load option
is enabled and the number of rows to be updated by an insert, update,
delete, or batch operation exceeds the threshold. If the operation
times out, the driver returns an error.

Default: 2

Bulk Load Threshold
(BulkLoadThreshold)

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2120

Chapter 4: Using the driver

DescriptionConnection Options: Bulk

Toggles options for the bulk load process. The value specified is a
positive integer representing the cumulative total of the Bulk Options
values.

The following bulk load options are available:

• Check Constraints - Checks constraints while data is being
inserted. Value=16.

• Fire Triggers - Causes the server to fire the insert triggers for rows
being inserted into the database. Value=32.

• Keep Identity - Preserves source identity values.When not enabled,
identity values are assigned by the destination. Value=1.

• Keep Nulls - Preserves null values in the destination table
regardless of the settings for default values. When not enabled,
null values are replaced by column default values, where
applicable. Value=64.

• Table Lock - Assigns a table lock for the duration of the bulk copy
operation. Other applications are not permitted to update the table
during the copy operation. When not enabled, the default bulk
locking mechanism (row or table) specified by the table lock on
bulk load server option is used. Value=2.

If disabled, the bulk load operation continues even if a value that would
cause an index to be invalidated is loaded.

Note: The cumulative value of the options is only used in a connection
string with the connection string attribute, BulkLoadOptions. On the
Bulk tab of the driver Setup dialog, the individual options are enabled
by selecting the appropriate check box.

Default: 2 (Table Lock enabled)

Bulk Options (BulkLoadOptions)

Specifies the character that the driver will use to delimit the field entries
in a bulk load data file.

Default: None

Field Delimiter
(BulkLoadFieldDelimiter)

Specifies the character that the driver will use to delimit the record
entries in a bulk load data file.

Default: None

Record Delimiter
(BulkLoadRecordDelimiter)

See "Connection option descriptions" for details about configuring the options.

See also
Connection option descriptions on page 129

121The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Using DataDirect Bulk Load

Using IP addresses
The driver supports Internet Protocol (IP) addresses in the IPv4 and IPv6 formats.

If your network supports named servers, the server name specified in the data source can resolve to an IPv4
or IPv6 address.

In the following connection string example, the IP address for the SQL Server server is specified in IPv4 format:

DRIVER=DataDirect 8.0 SQL Server Wire Protocol Driver;
HostName=123.456.78.90;PORT=1433;
DB=SQLSACCT;UID=JOHN;PWD=XYZZYYou

In the following connection string example, the IP address for the SQL Server server is specified in IPv6 format:

DRIVER=DataDirect 8.0 SQL Server Wire Protocol Driver;
HostName=2001:DB8:0000:0000:8:800:200C:417A;PORT=1433;
DB=SQLSACCT;UID=JOHN;PWD=XYZZYYou

In addition to the normal IPv6 format, the drivers in the preceding tables support IPv6 alternative formats for
compressed addresses. For example, the following connection string specifies the server using IPv6 format,
but uses the compressed syntax for strings of zero bits:

DRIVER=DataDirect 8.0 SQL Server Wire Protocol Driver;
HostName=2001:DB8:0:0:8:800:200C:417A;PORT=1433;
DB=SQLSACCT;UID=JOHN;PWD=XYZZYYou

For complete information about IPv6 formats, go to the following URL:

http://tools.ietf.org/html/rfc4291#section-2.2

XA interface support
The driver enables support for distributed transactions by implementing the XA interface. In an X/Open Distributed
Transaction Processing (DTP) system, the XA interface provides a method for the Transaction Manager (TM)
to call xa_ routines to interact with the Resource Manager (RM).

For more information on the X/Open DTP system, the XA interface, and the XA components discussed in the
following procedure, refer to Distributed Transaction Processing: The XA Specification.

To perform distributed transactions:

1. Establish a connection between your application and the RM (the database server you want to connect to)
in AUTOCOMMIT_OFF mode. For example:

rc = SQLConnect((HDBC)hdbc, (SQLCHAR*)dataSource, SQL_NTS,
(SQLWCHAR*)"user", SQL_NTS, (SQLWCHAR*)"password", SQL_NTS);
rc = SQLSetConnectAttr((HDBC)hdbc, SQL_ATTR_AUTOCOMMIT,
SQL_AUTOCOMMIT_OFF, SQL_NTS);

where:

user

is the user name required to connect to the RM.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2122

Chapter 4: Using the driver

http://tools.ietf.org/html/rfc4291#section-2.2
https://pubs.opengroup.org/onlinepubs/009680699/toc.pdf

password

is the password required to connect to the RM.

2. Load the driver library and call the GetXaSwitch() function. GetXaSwitch() returns the XA switch data
structure (xa_switch_t) exposed by the RM. xa_switch_t contains function pointers to the xa_ routines
that must be invoked by the TM to interact with the RM. For example:

#ifndef WIN32
LPCSTR libFile = "ddsqls.dll";
HMODULE sqlsLib = LoadLibrary(libFile);
xaSwitch = (XaSwitch)GetProcAddress(sqlsLib, "GetXaSwitch");

#else // Unix
handle = dlopen("ddsqls.so", RTLD_LAZY);
xaSwitch = (XaSwitch)dlsym(handle, "GetXaSwitch_");

#endif // End of WIN32
xaSwitch(0, &xaSwitchPtr);

3. Establish an XA connection between TM and RM. As a result, a global transaction is created. For example:

int RMID = rmid_value;
// Use xa_open_entry with XA connection string, RMID, and flag to establish the
connection.
rc = xaSwitchPtr->xa_open_entry("SSWP_XA+HostName=host_name+
PortNumber=1433+ACC=account_credentials+
SesTM=session_timeout+DataSource=dsn_name",rmid,flag);

where:

rmid_value

is the RM identifier.

host_name

is the name or IP address of the RM you want to connect to.

account_credentials

are the credentials required to connect to the RM. They must be provided in the following format:
P/USER/PASSWORD.

session_timeout

is the number of seconds the session remains active.

dsn_name

is the data source name.

flag

determines the function that is called after the connection ends. For example, TMASYNC and
TMNOFLAGS.

123The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

XA interface support

4. Create an XID for the transaction branch you want to associate with the global transaction. For example:

void DoMakeXid(int id, XID *xaXid){
int *dataPtr;
memset(xaXid, 0, sizeof(*xaXid));
xaXid->formatID = format_id
xaXid->gtrid_length = gtrid_length;
xaXid->bqual_length = bqual_length;
dataPtr = (int*)&xaXid->data;
dataPtr[0] = GetCurrentThreadId();
dataPtr[1] = GetCurrentThreadId();
}

where:

format_id

is the identifier that indicates the naming convention used by the TM.

gtrid_length

is the length of the global transaction ID. It should not exceed 64 bytes.

bqual_length

is the length of the branch qualifier ID. It should not exceed 64 bytes.

Note: In the above example, the GetCurrentThreadId() function returns the global transaction and branch
qualifier IDs. However, if you are using a SQL Server TM, you can use the IDs obtained from the TM instead
of those returned by the GetCurrentThreadId() function.

5. Start the transaction branch, enlist the connection, and then execute the required query.

// Use xa_start_entry to start the transaction branch.
rc = xaSwitchPtr->xa_start_entry(&xId, rmid, flag);

// Enlist connection.
rc = SQLSetConnectOption(hDbc, SQL_ATTR_ENLIST_IN_XA, (UDWORD)1);

// Execute query.
rc = SQLExecDirect(hstmt, (unsigned char*)"INSERT INTO table_name VALUES(value_1,
'value_2')", SQL_NTS);

6. Prepare and commit the transaction branch; then, delist the connection.

// Use xa_prepare_entry to prepare the trasaction branch.
rc = xaSwitchPtr->xa_prepare_entry(&xId, rmid, TMNOFLAGS);

// Use xa_commit_entry to commit the transaction branch.
rc = xaSwitchPtr->xa_commit_entry(&xId, rmid, TMNOFLAGS);

// Delist connection.
rc = SQLSetConnectOption(hDbc, SQL_ATTR_ENLIST_IN_XA, (UDWORD)0);

7. End the transaction branch.

// Use xa_end_entry to end the transaction branch.
rc = xaSwitchPtr->xa_end_entry(&xId, rmid, flag);

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2124

Chapter 4: Using the driver

Binding parameter markers
An ODBC application can prepare a query that contains dynamic parameters. Each parameter in a SQL
statement must be associated, or bound, to a variable in the application before the statement is executed.
When the application binds a variable to a parameter, it describes that variable and that parameter to the driver.
Therefore, the application must supply the following information:

• The data type of the variable that the application maps to the dynamic parameter

• The SQL data type of the dynamic parameter (the data type that the database system assigned to the
parameter marker)

The two data types are identified separately using the SQLBindParameter function. You can also use descriptor
APIs as described in the Descriptor section of the ODBC specification (version 3.0 and higher).

The driver relies on the binding of parameters to know how to send information to the database system in its
native format. If an application furnishes incorrect parameter binding information to the ODBC driver, the results
will be unpredictable. For example, the statement might not be executed correctly.

To ensure interoperability, your driver uses only the parameter binding information that is provided by the
application.

Isolation and lock levels supported
Microsoft SQL Server supports isolation levels 0 (Read Uncommitted), 1 (Read Committed), 2 (Repeatable
Read), and 3 (Serializable). Microsoft SQL Server supports row-level and table-level locking.

Microsoft SQL Server 2005 and higher supports the following additional isolation levels:

• Snapshot

• Read Committed with Snapshots

• Read Committed with Locks (equivalent to Read Committed in previous Microsoft SQL Server versions)

Refer to "Locking and isolation levels" in the Progress DataDirect for ODBC Drivers Reference for details.

Using the Snapshot isolation level
The Snapshot isolation level is available only with Microsoft SQL Server 2005 and higher. Setting the
SnapshotSerializable connection string attribute changes the behavior of the Serializable isolation level to use
the Snapshot Isolation level. This allows an application to use the Snapshot Isolation level with minimal or no
code changes.

If you are writing a new application, you may want to code it to set the connection attribute
SQL_COPT_SS_TXN_ISOLATION to the value SQL_TXN_SS_SNAPSHOT. The application then uses the
snapshot isolation level without requiring the Use Snapshot Transactions connection option.

See "Use Snapshot transactions" for additional information.

See also
Use Snapshot Transactions on page 189

125The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Binding parameter markers

Number of connections and statements supported
The SQL Server Wire Protocol driver supports multiple connections and multiple statements per connection.

SQL support
The driver supports the core SQL grammar.

Using arrays of parameters
Microsoft SQL Server databases natively support parameter arrays, and the SQL Server Wire Protocol driver,
in turn, supports them. When designing an application for performance, using native parameter arrays for bulk
inserts or updates, for example, can improve performance.

Refer to "Designing ODBC applications for performance optimization" in the Progress DataDirect for ODBC
Drivers Reference for details.

Support for Azure Synapse Analytics and Analytics
Platform System

The driver transparently connects to Microsoft Azure Synapse Analytics and Microsoft Analytics Platform
System (APS); however, the following limitations to features and functionality apply:

• No support for connecting to an instance using an IP address for the server. A named instance must be
specified for the Host Name (HostName) option.

• No support for unquoted identifiers. The driver always enforces ANSI rules regarding quotation marks for
all ADWand APS connections (EnabledQuotedIdentifiers=1); therefore, the Enable Quoted Identifiers
option is disabled.

• No support for connection pooling reauthentication.

• No support for Data Definition Language (DDL) queries within transactions.

• No support for closing holdable cursors when a transaction is committed.

• No support for server side cursors; therefore:

• Scroll-sensitive result sets are not supported.

• The Enable Server Side Cursors option is disabled. The driver always disables server side cursors
(EnableServersideCursors=0).

• No support for XA connections.

• Support for isolation levels is limited to only the read uncommitted level.

Refer to "Locking and isolation levels" in the Progress DataDirect for ODBC Drivers Reference for details.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2126

Chapter 4: Using the driver

• Support for the varchar(max), nvarchar(max), varbinary(max) data types is limited to Heap and Clustered
Index Tables.

• No support for the following SQL Server data types:

timestampdecimal() identity

tinyint() identityimage

ntextnumeric() identity

xmlsmallint identity

text

• Support for scalar string functions is limited to the following functions:

RTRIMLEFTASCII

SOUNDEXLTRIMCHAR

SPACEREPLACECONCAT

SUBSTRINGRIGHTDIFFERENCE

Refer to "String functions" in the Progress DataDirect for ODBC Drivers Reference for more information.

• Support for scalar numeric functions is limited to the following functions:

ROUNDEXPABS

SIGNFLOORACOS

SINLOGASIN

SQRTLOG10ATAN

TANPICEILING

TRUNCATEPOWERCOS

RADIANSCOT (ADW only)

RANDDEGREES

Refer to "Numeric functions" in the Progress DataDirect for ODBC Drivers Reference for more information.

• Support for scalar date and time functions is limited to the following functions:

QUARTERDAYOFWEEKCURDATE

SECONDDAYOFYEARCURRENT_DATE

WEEKHOURCURRENT_TIME

YEARMINUTECURTIME

MONTHDAYNAME

MONTHNAMEDAYOFMONTH

Refer to "Date and time functions" in the Progress DataDirect for ODBC Drivers Reference for more
information.

127The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Support for Azure Synapse Analytics and Analytics Platform System

See also
Enable Quoted Identifiers on page 154
Enable Server Side Cursors on page 155
Data types on page 21

Inserts on IDENTITY columns in data replication
scenarios

The driver supports inserts into IDENTITY columns in data replication scenarios. This functionality may be
useful when publishing data from a previous version of SQL Server.

Either the Enable Replication User (EnableReplicationUser) connection option or the
SQL_COPT_REPLICATION_USER connection attribute (numeric value 1080) can be used to allow inserts into
IDENTITY columns. When the option or attribute is set to 1 (Enabled), explicit values can be inserted into
IDENTITY columns defined as NOT FOR REPLICATION. For inserts to succeed, IDENTITY columns must
defined as NOT FOR REPLICATION.

If different values are specified for the Enable Replication User option and the SQL_COPT_REPLICATION_USER
attribute, driver behavior is determined by the value of the SQL_COPT_REPLICATION_USER attribute. The
SQL_COPT_REPLICATION_USER connection attribute is included in the file qesqlext.h installed with the
product.

See also
Enable Replication User on page 155

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2128

Chapter 4: Using the driver

5
Connection option descriptions

The following connection option descriptions are listed alphabetically by the GUI name that appears on the
driver Setup dialog box. The connection string attribute name, along with its short name, is listed immediately
underneath the GUI name.

In most cases, the GUI name and the attribute name are the same; however, some exceptions exist. If you
need to look up an option by its connection string attribute name, please refer to the alphabetical table of
connection string attribute names.

Also, a few connection string attributes, for example, Password, do not have equivalent options that appear
on the GUI. They are in the list of descriptions alphabetically by their attribute names.

Note: The driver does not support specifying values for the same connection option multiple times in a
connection string or DSN. If a value is specified using the same attribute multiple times or using both long and
short attributes, the connection may fail or the driver may not behave as intended.

The following table lists the connection string attributes supported by the SQL Server Wire Protocol driver.

Table 11: SQL Server Wire Protocol Attribute Names

DefaultAttribute (Short Name)

-1 (No expiration)AEKeyCacheTTL (AETTL)

NoneAEKeystoreClientSecret (AEKSCS)

NoneAEKeystorePrincipalId (AEKSPI)

1.1.1,1.0.2AllowedOpenSSLVersions (AOV)

129The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

DefaultAttribute (Short Name)

NoneAlternateServers (ASRV)

0 (Disabled)AlwaysReportTriggerResults (ARTR)

1 (Enabled)AnsiNPW (ANPW)

0 (READWRITE)ApplicationIntent (AI)

NoneApplicationName (APP)

1 (Enabled)ApplicationUsingThreads (AUT)

1 (Encrypt Password)Authentication Method

32BulkBinaryThreshold (BBT)

-1BulkCharacterThreshold (BCT)

1024BulkLoadBatchSize (BLBS)

2BulkLoadOptions (BLO)

NoneBulkLoadFieldDelimiter (BLFD)

NoneBulkLoadRecordDelimiter (BLRD

2BulkLoadThreshold (BLTH)

DisabledColumnEncryption (CE)

0 (Disabled)ConnectionReset (CR)

0ConnectionRetryCount (CRC)

3ConnectionRetryDelay (CRD)

Empty stringCryptoLibName (CLN)

TLSv1.2, TLSv1.1, TLSv1, SSLv3CryptoProtocolVersion (CPV)

NoneDatabase (DB)

NoneDataSourceName (DSN)

NoneDescription (n/a)

NoneDomain (DOM)

0 (Disabled)EnableBulkLoad (EBL)

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2130

Chapter 5: Connection option descriptions

DefaultAttribute (Short Name)

0 (Disabled)EnableQuotedIdentifiers (EQI)

0 (Disabled)EnableReplicationUser (ERU)

1 (Enable All Except Forward Only)EnableServersideCursors (ESSC)

0 (None)EncryptionMethod (EM)

0 (Non-Atomic)FailoverGranularity (FG)

0 (Connection)FailoverMode (FM)

0 (Disabled)FailoverPreconnect (FP)

0 (Disabled)FetchTSWTZasTimestamp (FTSWTZAT)

1 (Enabled)FetchTWFSasTime (FTWFSAT)

nativeGSSClient (GSSC)

NoneHostName (HOST)

NoneHostNameInCertificate (HNIC)

4 (ISO 8559-1 Latin-1)IANAAppCodePage (IACP) (UNIX ONLY)

NoneInitializationString (IS)

0 (Disabled)KeepAlive (KA)

0 (Disabled)KeepConnectionActive (KCA)

NoneLanguage (LANG)

0LoadBalanceTimeout (LBT)

0 (Disabled)LoadBalancing (LB)

NoneLoginTimeout (LT)

NoneLogonID (UID)

100MaxPoolSize (MXPS)

0MinPoolSize (MNPS)

0 (Disabled)MultiSubnetFailover (MSF)

-1PacketSize (PS)

NonePassword (PWD)

131The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

DefaultAttribute (Short Name)

0 (disabled)Pooling (POOL)

1433PortNumber (PORT)

/dev/randomPRNGSeedFile (PSF) UNIX\Linux only

0 (File)PRNGSeedSource (PSS) UNIX\Linux only

Empty stringProxyHost (PXHN)

0 (NONE)ProxyMode (PXM)

Empty stringProxyPassword (PXPW)

0ProxyPort (PXPT)

Empty stringProxyUser (PXU)

0QueryTimeout (QT)

0 (Ignore Errors)ReportCodepageConversionErrors (RCCE)

Empty stringSSLLibName (SLN)

0 (Disabled)SnapshotSerializable (SS)

1500 (seconds)SocketIdleTimeCheckInterval (SITCI)

NoneTruststore (TS)

NoneTruststorePassword (TSP)

NoneUser Name

1 (enabled)ValidateServerCertificate (VSC)

NoneWorkstationID (WSID)

-10XMLDescribeType (XDT)

For details, see the following topics:

• AllowedOpenSSLVersions

• Alternate Servers

• Always Report Trigger Results

• AnsiNPW

• Application Intent

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2132

Chapter 5: Connection option descriptions

• Application Name

• Application Using Threads

• Authentication Method

• Batch Size

• Bulk Binary Threshold

• Bulk Character Threshold

• Bulk Load Threshold

• Bulk Options

• Column Encryption

• Connection Pooling

• Connection Reset

• Connection Retry Count

• Connection Retry Delay

• Crypto Protocol Version

• CryptoLibName

• Data Source Name

• Database

• Description

• Domain

• Enable Bulk Load

• Enable Quoted Identifiers

• Enable Replication User

• Enable Server Side Cursors

• Encryption Method

• Failover Granularity

• Failover Mode

• Failover Preconnect

• Fetch TSWTZ as Timestamp

• Fetch TWFS as Time

• Field Delimiter

• GSS Client Library

• Host Name

• Host Name In Certificate

133The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

• IANAAppCodePage

• Initialization String

• Keep Connection Active

• Key Cache Time To Live

• Key Store Principal Id

• Key Store Secret

• Language

• Load Balance Timeout

• Load Balancing

• Login Timeout

• Max Pool Size

• Min Pool Size

• Multi-Subnet Failover

• Packet Size

• Password

• Port Number

• PRNGSeedFile

• PRNGSeedSource

• Proxy Host

• Proxy Mode

• Proxy Password

• Proxy Port

• Proxy User

• Query Timeout

• Record Delimiter

• Report Codepage Conversion Errors

• Socket Idle Time

• SSLLibName

• TCP Keep Alive

• Trust Store

• Trust Store Password

• Use Snapshot Transactions

• User Name

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2134

Chapter 5: Connection option descriptions

• Validate Server Certificate

• Workstation ID

• XML Describe Type

AllowedOpenSSLVersions
Attribute
AllowedOpenSSLVersions (AOV)

Purpose

Important: Version 1.0.2 of the OpenSSL library has reached the end of its product life cycle and is no longer
receiving security updates. Best security practices dictate that you use the latest version of the library.

Determines which version of the OpenSSL library file the driver uses for data encryption. Although the latest
version of the OpenSSL library is the most secure, some characteristics of the library can cause connections
to certain databases to fail. This option allows you to continue using older versions of the OpenSSL library
while you transition your environment to support the latest version.

Valid Values
latest | openssl_version_number[[,openssl_version_number]...]

where:

openssl_version_number

is the version number for the OpenSSL library file to be loaded by the driver, for example, 1.0.2.
When more than one version is specified, the driver will first attempt to load the first version listed.
If the driver is unable to locate and load this file, it will attempt to load the next version in the value.
The driver currently supports versions 1.1.1 and 1.0.2. Refer to the installed readme for latest
supported versions.

Behavior
If set to latest, the driver loads the latest installed version of the OpenSSL library file provided by Progress.

If set to openssl_version_number, the driver loads the specified version of the OpenSSL library file. This
value is used to specify a version other than the latest.

Notes
• This option is ignored if OpenSSL library files are specified using the CryptoLibName and SSLLibName

options.

• This option works only with OpenSSL library files provided by Progress and user supplied OpenSSL library
files that match Progress's naming convention and installation location.

• This option works only for installations using the default directory structure.

• Consult your database administrator concerning the security settings of your server.

135The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

AllowedOpenSSLVersions

Default
1.1.1,1.0.2

GUI Tab
The value for this option is specified as an option-value pair in the Extended Options field on the Advanced
tab. For example:

AllowedOpenSSLVersions=1.0.2

See also
• Advanced tab on page 53

Alternate Servers
Attribute
AlternateServers (ASRV)

Purpose
A list of alternate database servers to which the driver tries to connect if the primary database server is
unavailable. Specifying a value for this option enables connection failover for the driver. The value you specify
must be in the form of a string that defines the physical location of each alternate server. All of the other required
connection information for each alternate server is the same as what is defined for the primary server connection.

Valid Values
(HostName=hostvalue:PortNumber=portvalue:Database=databasevalue[, . . .])

You must specify the host name, port number, and database name of each alternate server.

Notes
• An alternate server address in IPv6 format must be enclosed in double quotation marks.

Example
The following Alternate Servers value defines two alternate database servers for connection failover:

AlternateServers=(HostName=SqlsServer:PortNumber=1433:Database=Sqlsdb1,
HostName=255.201.11.24:PortNumber=1434:Database=Sqlsdb2)

Default
None

GUI Tab
Failover tab

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2136

Chapter 5: Connection option descriptions

Always Report Trigger Results
Attribute
AlwaysReportTriggerResults (ARTR)

Purpose
Determines how the driver reports results that are generated by database triggers (procedures that are stored
in the database and executed, or fired, when a table is modified). For Microsoft SQL Server 2005 and higher
and Windows Azure SQL Database, this includes triggers that are fired by Data Definition Language (DDL)
events.

Valid Values
0 | 1

Behavior
If set to 1 (Enabled), the driver returns all results, including results that are generated by triggers. Multiple
trigger results are returned one at a time. You can use the SQLMoreResults function to return individual trigger
results. Warnings and errors are reported in the results as they are encountered.

If set to 0 (Disabled):

• For Microsoft SQL Server 2005 and higher and Windows Azure SQL Database, the driver does not report
trigger results if the statement is a single INSERT, UPDATE, DELETE, CREATE, ALTER, DROP, GRANT,
REVOKE, or DENY statement.

• For other Microsoft SQL Server databases, the driver does not report trigger results if the statement is a
single INSERT, UPDATE, or DELETE statement.

When set to 0, the only result that is returned is the update count that is generated by the statement that was
executed (if no errors occurred). Although trigger results are ignored, any errors and warnings that are generated
by the trigger are reported. If errors are reported, the update count is not reported.

Default
0 (Disabled)

GUI Tab
Advanced tab

AnsiNPW
Attribute
AnsiNPW (ANPW)

137The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Always Report Trigger Results

Purpose
Determines whether ANSI-defined behaviors are exposed. Setting this option has no effect on NULL
concatenation for Windows Azure SQL Database or SQL Server versions higher than SQL Server 2012.

Valid Values
0 | 1

Behavior
When set to 1 (Enabled), the driver sets four ANSI-defined behaviors for handling NULL comparisons: NULLS,
character data padding, warnings, and NULL concatenation.

When set to 0 (Disabled), ANSI-defined behaviors are not exposed. If the driver appears to be truncating trailing
blank spaces, set this attribute to 0 (Disabled).

Default
1 (Enabled)

GUI Tab
Advanced tab

Application Intent
Attribute
ApplicationIntent (AI)

Purpose
Specifies whether the driver connects to read-write databases or requests read-only routing to connect to
read-only database replicas. Read-only routing only applies to connections in Microsoft SQL Server 2012 where
Always On Availability Groups have been deployed.

Valid Values
0 | 1

Behavior
If set to 0 (READWRITE), the driver connects to a read-write node in the Always On environment.

If set to 1 (READONLY), the driver requests read-only routing and connects to the read-only database replicas
specified by the server.

Notes
• By setting ApplicationIntent to 1 (ReadOnly) and querying read-only database replicas when possible, you

can improve efficiency of your environment by reducing the work load on read-write nodes.

• When ApplicationIntent is enabled, the virtual network name (VNN) of the availability group listener must
be specified in the Host Name connection option.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2138

Chapter 5: Connection option descriptions

Default
0 (READWRITE)

GUI Tab
Advanced tab

Application Name
Attribute
ApplicationName (APP)

Purpose
The name the database uses to identify your application.

Valid Values
string

where:

string

is your application name.

Default
None

GUI Tab
Advanced tab

Application Using Threads
Attribute
ApplicationUsingThreads (AUT)

Purpose
Determines whether the driver works with applications using multiple ODBC threads.

Valid Values
0 | 1

Behavior
If set to 1 (Enabled), the driver works with single-threaded and multi-threaded applications.

139The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Application Name

If set to 0 (Disabled), the driver does not work with multi-threaded applications. If using the driver with
single-threaded applications, this value avoids additional processing required for ODBC thread-safety standards.

Notes
• This connection option can affect performance.

Default
1 (Enabled)

GUI Tab
Advanced tab

See Also
Performance considerations on page 78

Authentication Method
Attribute
AuthenticationMethod (AM)

Purpose
Specifies the method the driver uses to authenticate the user to the server when a connection is established.
If the specified authentication method is not supported by the database server, the connection fails and the
driver generates an error.

Valid Values
1 | 4 | 9 | 10 | 13

Behavior
If set to 1 (Encrypt Password), the driver sends the user ID in clear text and an encrypted password to the
server for authentication.

If set to 4 (Kerberos Authentication), the driver uses Kerberos authentication. This method supports both
Windows Active Directory Kerberos and MIT Kerberos environments. Setting this value to 4 also enables
NTLMv2 and NTLMv1 authentication on Windows platforms. The protocol used for a connection is determined
by the local security policy settings for the client.

(UNIX and Linux only) If set to 9 on Linux and UNIX platforms, the driver uses NTLMv1 or NTLMv2 authentication.
The driver determines which protocol to use based on the size of the password provided. For passwords 14
bytes or less, the driver uses NTLMv1; otherwise, the driver uses NTLMv2. To connect to the database, users
must supply the Windows User Id, Password, and, in some cases, Domain to the driver.

(UNIX and Linux only) If set to 10, the driver uses NTLMv2 authentication. To connect to the database, users
must supply the Windows User Id, Password, and, in some cases, Domain to the driver.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2140

Chapter 5: Connection option descriptions

If set to 13 (Active Directory Password), the driver uses Azure Active Directory (Azure AD) authentication when
establishing a connection to an Azure SQL Database data store. All communications to the service are encrypted
using SSL.

Important: Before enabling Azure AD authentication, see "Azure Active Directory Authentication" for
requirements and additional information.

Notes
• NTLM single sign on is supported only on Windows.

Default
1 (Encrypt Password)

GUI Tab
Security tab

See Also
Azure Active Directory authentication on page 92

Batch Size
Attribute
BulkLoadBatchSize (BLBS)

Purpose
The number of rows that the driver sends to the database at a time during bulk operations. This value applies
to all methods of bulk loading.

Valid Values
0 | x

where:

x

is a positive integer that specifies the number of rows to be sent.

Default
1024

GUI Tab
Bulk tab

141The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Batch Size

Bulk Binary Threshold
Attribute
BulkBinaryThreshold (BBT)

Purpose
The maximum size, in KB, of binary data that is exported to the bulk data file.

Valid Values
-1 | 0 | x

where:

x

is an integer that specifies the number of KB.

Behavior
If set to -1, all binary data, regardless of size, is written to the bulk data file, not to an external file.

If set to 0, all binary data, regardless of size, is written to an external file, not the bulk data file. A reference to
the external file is written to the bulk data file.

If set to x, any binary data exceeding this specified number of KB is written to an external file, not the bulk data
file. A reference to the external file is written to the bulk data file.

Default
32

GUI Tab
Bulk tab

Bulk Character Threshold
Attribute
BulkCharacterThreshold (BCT)

Purpose
The maximum size, in KB, of character data that is exported to the bulk data file.

Valid Values
-1 | 0 | x

where:

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2142

Chapter 5: Connection option descriptions

x

is an integer that specifies the number of KB.

Behavior
If set to -1, all character data, regardless of size, is written to the bulk data file, not to an external file.

If set to 0, all character data regardless of size, is written to an external file, not the bulk data file. A reference
to the external file is written to the bulk data file.

If set to x, any character data exceeding this specified number of KB is written to an external file, not the bulk
data file. A reference to the external file is written to the bulk data file.

Default
-1

GUI Tab
Bulk tab

Bulk Load Threshold
Attribute
BulkLoadThreshold (BLTH)

Purpose
Determines when the driver uses bulk load for insert, update, delete, or batch operations. If the Enable Bulk
Load option is set to 1 (enabled) and the number of rows affected by an insert, update, delete, or batch operation
exceeds the threshold specified by this option, the driver uses SQL Server bulk load protocol to perform the
operation.

Valid Values
0 | x

where:

x

is a positive integer that represents a threshold (number of rows).

Behavior
If set to 0, the driver always uses bulk load to execute insert, update, delete, or batch operations.

If set to x, the driver only uses bulk load if the Enable Bulk Load option is enabled and the number of rows to
be updated by an insert, update, delete, or batch operation exceeds the threshold. If the operation times out,
the driver returns an error.

Notes
• If the Enable Bulk Load option is set to false, this option is ignored.

143The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Bulk Load Threshold

Default
2

GUI Tab
Bulk tab

Bulk Options
Attribute
BulkLoadOptions (BLO)

Purpose
Toggles options for the bulk load process.

Valid Values
0 | x

where:

x

is a positive integer representing the cumulative total of the Bulk Options values.

Behavior
If set to 0, none of the options for bulk load are enabled.

If set to x, the values represented by x are enabled.

Note: The cumulative value of the options is only used in a connection string with the connection string attribute,
BulkLoadOptions. On the Bulk tab of the driver Setup dialog, the individual options are enabled by selecting
the appropriate check box.

The following bulk load options are available:

• Check Constraints - Checks constraints while data is being inserted. Value=16.

• Fire Triggers - Causes the server to fire the insert triggers for rows being inserted into the database. Value=32.

• Keep Identity - Preserves source identity values. When not enabled, identity values are assigned by the
destination. Value=1.

• Keep Nulls - Preserves null values in the destination table regardless of the settings for default values.
When not enabled, null values are replaced by column default values, where applicable. Value=64.

• Table Lock - Assigns a table lock for the duration of the bulk copy operation. Other applications are not
permitted to update the table during the copy operation. When not enabled, the default bulk locking
mechanism (row or table) specified by the table lock on bulk load server option is used. Value=2.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2144

Chapter 5: Connection option descriptions

Example
If you wanted to enable Check Constraints (16), Fire Triggers (32), and Keep Identity (1) in a connection string,
you would add the values together:

BulkLoadOptions=49

To enable these options on the Bulk tab of the driver Setup dialog, you would simply select the check box for
each one.

Default
2 (Table Lock enabled)

GUI Tab
Bulk tab

Column Encryption
Attribute
ColumnEncryption (CE)

Purpose
Specifies whether the driver is enabled for Always Encrypted functionality when accessing data from encrypted
columns.

The application can override the value for this option by setting a value for the
SQL_SOPT_SS_COLUMN_ENCRYPTION statement attribute in an SQL Statement, thereby allowing you to
enable/disable support for the Always Encrypted feature during the same connection. By enabling support only
as needed, you can avoid some of the overhead associated with processing queries using Always Encrypted
and improve performance. The Column Encryption option must be set to Enabled to use the
SQL_SOPT_SS_COLUMN_ENCRYPTION statement attribute. See the "Enabling Always Encrypted" for more
information.

Valid Values
Disabled | Enabled

Behavior
If set to Enabled, the driver fully supports Always Encrypted functionality. The driver transparently decrypts
result sets and returns them to the application. In addition, the driver transparently encrypts parameter values
that are associated with encrypted columns.

If set to ResultsetOnly, the driver transparently decrypts result sets and returns them to the application.
Queries containing parameters that affect encrypted columns will return an error.

If set to Disabled, the driver does not use Always Encrypted functionality. The driver does not attempt to
decrypt data from encrypted columns, but will return data as binary formatted cipher text. However, statements
containing parameters that reference encrypted columns are not supported and will return an error.

145The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Column Encryption

Notes
• When Always Encrypted functionality is enabled (ColumnEncryption=Enabled | ResultsetOnly), the

driver transparently supports both randomized encryption and deterministic encryption.

• Parameter markers must be used when specifying values that are associated with encrypted columns. If
literal values are specified in a statement targeting encrypted columns, the driver will return an error.

• If you using the Azure Key Vault as your keystore provider, values for the Key Store Principal ID
(AEKeystorePrincipalId) and Key Store Secret (AEKeystoreClientSecret) options must be specified.

Default
Disabled

GUI Tab
Security tab

See Also
• Enabling Always Encrypted on page 105

• Key Store Principal Id on page 168

• Key Store Secret on page 169

• Key Cache Time To Live on page 167

• Performance considerations on page 78

• Always Encrypted on page 104

Connection Pooling
Attribute
Pooling (POOL)

Purpose
Specifies whether to use the driver’s connection pooling.

Valid Values
0 | 1

Behavior
If set to 1 (Enabled), the driver uses connection pooling.

If set to 0 (Disabled), the driver does not use connection pooling.

Notes
• The application must be thread-enabled to use connection pooling.

• This connection option can affect performance.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2146

Chapter 5: Connection option descriptions

Default
0 (Disabled)

GUI Tab
Pooling tab

See Also
Performance considerations on page 78

Connection Reset
Attribute
ConnectionReset (CR)

Purpose
Determines whether the state of connections that are removed from the connection pool for reuse by the
application is reset to the initial configuration of the connection.

Valid Values
0 | 1

Behavior
If set to 1 (Enabled), the state of connections removed from the connection pool for reuse by an application is
reset to the initial configuration of the connection. Resetting the state can negatively impact performance
because additional commands must be sent over the network to the server to reset the state of the connection.

If set to 0 (Disabled), the state of connections is not reset.

Notes
• This connection option can affect performance.

Default
0 (Disabled)

GUI Tab
Pooling tab

See Also
Performance considerations on page 78

147The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Connection Reset

Connection Retry Count
Attribute
ConnectionRetryCount (CRC)

Purpose
The number of times the driver retries connection attempts to the primary database server, and if specified,
alternate servers until a successful connection is established.

This option and the Connection Retry Delay connection option, which specifies the wait interval between
attempts, can be used in conjunction with failover.

Valid Values
0 | x

where:

x

is a positive integer from 1 to 65535.

Behavior
If set to 0, the driver does not try to connect after the initial unsuccessful attempt.

If set to x, the driver retries connection attempts the specified number of times. If a connection is not established
during the retry attempts, the driver returns an error that is generated by the last server to which it tried to
connect.

Default
0

GUI Tab
Failover tab

Connection Retry Delay
Attribute
ConnectionRetryDelay (CRD)

Purpose
Specifies the number of seconds the driver waits between connection retry attempts when Connection Retry
Count is set to a positive integer.

This option and the Connection Retry Count connection option can be used in conjunction with failover.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2148

Chapter 5: Connection option descriptions

Valid Values
0 | x

where:

x

is a positive integer from 1 to 65535.

Behavior
If set to 0, there is no delay between retries.

If set to x, the driver waits the specified number of seconds between connection retry attempts.

Default
3

GUI Tab
Failover tab

Crypto Protocol Version
Attribute
CryptoProtocolVersion (CPV)

Purpose
Specifies a comma-separated list of the cryptographic protocols to use when SSL is enabled using the Encryption
Method connection option (EncryptionMethod=1 | 6 | 7). When multiple protocols are specified, the driver uses
the highest version supported by the server. If none of the specified protocols are supported by the database
server, driver behavior is determined by the Encryption Method connection option.

Valid Values
cryptographic_protocol [[, cryptographic_protocol]...]

where:

cryptographic_protocol

is one of the following cryptographic protocols:

TLSv1.2 | TLSv1.1 | TLSv1 | SSLv3 | SSLv2

Caution: Good security practices recommend using TLSv1 or higher, due to known vulnerabilities in the SSLv2
and SSLv3 protocols.

149The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Crypto Protocol Version

Example
If your security environment is configured to use TLSv1.2 and TLSv1.1, specify the following values:

CryptoProtocolVersion=TLSv1.2, TLSv1.1

Notes
• This option is ignored if encryption is disabled (EncryptionMode=0).

• Consult your database administrator concerning the data encryption settings of your server.

Default
TLSv1.2,TLSv1.1,TLSv1

GUI Tab
Security tab

See also
Encryption Method on page 156

CryptoLibName
Attribute
CryptoLibName (CLN)

Purpose
The absolute path for the OpenSSL library file containing the cryptographic library to be used by the data source
or connection when TLS/SSL is enabled. The cryptograpic library contains the implementations of cryptographic
algorithms the driver uses for data encryption.

This option allows you to designate a different cryptographic library if you encounter issues with the default
version or want to use a library that you provide. Common issues that require designating a different library
include security vulnerabilities with specific libraries or compatibility issues with your server or application.

Valid Values
absolute_path\openssl_filename

where:

absolute_path

is the absolute path to where the OpenSSL file is located

openssl_filename

is the name of the OpenSSL library file containing the cryptographic library to be used by your data
source or connection.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2150

Chapter 5: Connection option descriptions

Example
C:\Program Files\Progress\DataDirect\ODBC_80\Drivers\OpenSSL\1.0.2d\ddssl28.dll

Notes
• The OpenSSL library files provided by Progress combine the cryptographic and TLS/SSL libraries into a

single file; therefore, when your drivers are using a Progress library file, the values specified for the
CryptoLibName and SSLLibName options should be the same. For non-Progress library files, the libraries
may use separate files, which would require unique values to be specified.

• This option can be used to designate OpenSSL libraries not installed by the product; however, the drivers
are only certified against libraries provided by Progress.

Default
Empty string

GUI Tab
The value for this option is specified as an option-value pair in the Extended Options field on the Advanced
tab. For example:

CryptoLibName=C:\Program Files\Progress\DataDirect\

ODBC_80\drivers\OpenSSL\1.0.2d\ddssl28.dll;

See also
• Advanced tab

• SSLLibName on page 186

Data Source Name
Attribute
DataSourceName (DSN)

Purpose
Specifies the name of a data source in your Windows Registry or odbc.ini file.

Valid Values
string

where:

string

is the name of a data source.

Default
None

151The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Data Source Name

GUI Tab
General tab

Database
Attribute
Database (DB)

Purpose
Specifies the name of the database to which you want to connect.

Valid Values
database_name

where:

database_name

is the name of a valid database.

Default
None

GUI Tab
General tab

Description
Attribute
Description (n/a)

Purpose
Specifies an optional long description of a data source. This description is not used as a runtime connection
attribute, but does appear in the ODBC.INI section of the Registry and in the odbc.ini file.

Valid Values
string

where:

string

is a description of a data source.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2152

Chapter 5: Connection option descriptions

Default
None

GUI Tab
General tab

Domain
Attribute

Domain (DOM)

Purpose
Specifies the Windows domain that the driver uses when connecting to a SQL Server Instance.

To connect to the database, users must supply the Windows User Id, Password, and, in some cases, domain
to the driver. NTLM single sign on is not supported.

Valid Values
string

where:

string

is a valid Windows domain for the user specified by LoginId. This attribute applies only when
Authentication Mode is set to 9.

Default
None

GUI Tab
n/a

Enable Bulk Load
Attribute
EnableBulkLoad (EBL)

Purpose
Specifies the bulk load method.

153The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Domain

Valid Values
0 | 1

Behavior
If set to 1 (Enabled), the driver uses the database bulk load protocol when an application executes an INSERT
with multiple rows of parameter data. If the protocol cannot be used, the driver returns a warning.

If set to 0 (Disabled), the driver uses standard parameter arrays.

Default
0 (Disabled)

GUI Tab
Bulk tab

Enable Quoted Identifiers
Attribute
EnableQuotedIdentifiers (EQI)

Purpose
Determines whether the driver allows the use of quoted identifiers.

Valid Values
0 | 1

Behavior
If set to 1 (Enabled), the database enforces ANSI rules regarding quotation marks. Double quotation marks
can only be used for identifiers, such as column and table names. Character strings must be enclosed in single
quotation marks, for example:

SELECT "au_id"
FROM "authors"
WHERE "au_lname" = 'O''Brien'

If set to 0 (Disabled), applications that use quoted identifiers encounter errors when they generate SQL
statements with quoted identifiers.

Default
0 (Disabled)

GUI Tab
Advanced tab

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2154

Chapter 5: Connection option descriptions

Enable Replication User
Attribute
EnableReplicationUser (ERU)

Purpose
Specifies whether explicit values may be inserted into IDENTITY columns defined as NOT FORREPLICATION.

Valid Values
0 | 1

Behavior
If set to 1 (Enabled), the driver allows explicit inserts on IDENTITY columns defined as NOT FORREPLICATION.

If set to 0 (Disabled), the driver enforces constraints on IDENTITY columns imposed by the NOT FOR
REPLICATION flag.

Notes
• To provide greater control to an application, enable replication user functionality may be enabled by setting

the SQL_COPT_REPLICATION_USER connection attribute (numeric value 1080) to 1 (Enabled). If different
values are specified for the Enable Replication User option and the SQL_COPT_REPLICATION_USER
attribute, driver behavior is determined by the value of the SQL_COPT_REPLICATION_USER attribute.

Default
0 (Disabled)

GUI Tab
Advanced tab

See also
• Inserts on IDENTITY columns in data replication scenarios on page 128

Enable Server Side Cursors
Attribute
EnableServersideCursors (ESSC)

Purpose
Determines whether server-side cursors are enabled for the data source. This option applies to Forward Only,
Static and Keyset cursors.

155The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Enable Replication User

Valid Values
0 | 1 | 2 | 3 | 4

Behavior
If set to 0 (Disabled), all server-side cursors are disabled for the data source.

If set to 1 (Enable All Except Forward Only), all server-side scrollable cursors are enabled for the data source,
while forward-only cursors on the server side are disabled.

If set to 2 (Enable Forward Only for Rowset Size >1), only forward-only cursors on the server-side are enabled
when the rowset size is set to a value greater than one.

If set to 3 (Enable All), all server-side cursors, scrollable and forward-only, are enabled for the data source.

If set to 4 (Enable Forward Only for Select For Update), forward-only cursors on the server-side are enabled
only for Select For Update statements. For other Select statements, the driver uses forward-only cursors on
the client-side. This setting avoids using driver emulation for other Select statements, thereby improving
performance and allowing the use of native updatable result sets.

Notes
• This connection option can affect performance.

Default
1 (Enable All Except Forward Only)

GUI Tab
Advanced tab

See also
Performance considerations on page 78

Encryption Method
Attribute
EncryptionMethod (EM)

Purpose
The method the driver uses to encrypt data sent between the driver and the database server.

Valid Values
0 | 1 | 6 | 7

Behavior
If set to 0 (None), data is not encrypted.

If set to 1 (SSL), data is encrypted using the SSL protocols specified in the Crypto Protocol Version connection
option.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2156

Chapter 5: Connection option descriptions

If set to 6 (RequestSSL), the login request and data are encrypted using SSL if the server is configured for
SSL. If the server is not configured for SSL, an unencrypted connection is established. The SSL protocol used
is determined by the setting of the Crypto Protocol Version connection option.

If set to 7 (LoginSSL), the login request is encrypted using SSL regardless of whether the server is configured
for SSL. The data is encrypted using SSL if the server is configured for SSL, and the data is unencrypted if the
server is not configured for SSL. The SSL protocol used is determined by the setting of the Crypto Protocol
Version connection option.

This option can only be set to 1 when Authentication Method is set to 1.

Notes
• When establishing a connection to Microsoft Azure Synapse Analytics, Microsoft Analytics Platform System,

or Microsoft Windows Azure SQL Database, the driver will enable SSL data encryption by default
(EncryptionMethod=1).

• For values 1 through 7, the SSL protocol used is determined by the setting of the Crypto Protocol Version
connection option.

• The driver must use the server-specified packet size when using SSL encryption. If SSL is used, any value
set for the Packet Size connection option is ignored.

• This connection option can affect performance.

Default
0 (None)

GUI Tab
Security tab

See Also
Crypto Protocol Version on page 149

Performance considerations on page 78

Failover Granularity
Attribute
FailoverGranularity (FG)

Purpose
Determines whether the driver fails the entire failover process or continues with the process if errors occur
while trying to reestablish a lost connection.

This option applies only when Failover Mode is set to 1 (Extended Connection) or 2 (Select).

The Alternate Servers option specifies one or multiple alternate servers for failover and is required for all failover
methods.

Valid Values
0 | 1 | 2 | 3

157The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Failover Granularity

Behavior
If set to 0 (Non-Atomic), the driver continues with the failover process and posts any errors on the statement
on which they occur.

If set to 1 (Atomic) the driver fails the entire failover process if an error is generated as the result of anything
other than executing and repositioning a Select statement. If an error is generated as a result of repositioning
a result set to the last row position, the driver continues with the failover process, but generates a warning that
the Select statement must be reissued.

If set to 2 (Atomic Including Repositioning), the driver fails the entire failover process if any error is generated
as the result of restoring the state of the connection or the state of work in progress.

If set to 3 (Disable Integrity Check), the driver does not verify that the rows that were restored during the failover
process match the original rows. This value applies only when Failover Mode is set to 2 (Select).

Default
0 (Non-Atomic)

GUI Tab
Failover tab

Failover Mode
Attribute
FailoverMode (FM)

Purpose
Specifies the type of failover method the driver uses.

The Alternate Servers option specifies one or multiple alternate servers for failover and is required for all failover
methods.

Valid Values
0 | 1 | 2

Behavior
If set to 0 (Connection), the driver provides failover protection for new connections only.

If set to 1 (Extended Connection), the driver provides failover protection for new and lost connections, but not
any work in progress.

If set to 2 (Select), the driver provides failover protection for new and lost connections. In addition, it preserves
the state of work performed by the last Select statement executed.

Notes
• This connection option can affect performance.

Default
0 (Connection)

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2158

Chapter 5: Connection option descriptions

GUI Tab
Failover tab

See Also
Performance considerations on page 78

Failover Preconnect
Attribute
FailoverPreconnect (FP)

Purpose
Specifies whether the driver tries to connect to the primary and an alternate server at the same time.

This attribute applies only when Failover Mode is set to 1 (Extended Connection) or 2 (Select) and at least one
alternate server is specified.

The Alternate Servers option specifies one or multiple alternate servers for failover and is required for all failover
methods.

Valid Values
0 | 1

Behavior
If set to 0 (Disabled), the driver tries to connect to an alternate server only when failover is caused by an
unsuccessful connection attempt or a lost connection. This value provides the best performance, but your
application typically experiences a short wait while the failover connection is attempted.

If set to 1 (Enabled), the driver tries to connect to the primary and an alternate server at the same time. This
can be useful if your application is time-sensitive and cannot absorb the wait for the failover connection to
succeed.

Default
0 (Disabled)

GUI Tab
Failover tab

Fetch TSWTZ as Timestamp
Attribute
FetchTSWTZasTimestamp (FTSWTZAT)

159The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Failover Preconnect

Purpose
Determines whether the driver returns column values with the timestamp with time zone data type as the ODBC
data type SQL_TYPE_TIMESTAMP or SQL_VARCHAR.

Valid Values
0 | 1

Behavior
If set to 1 (Enabled), the driver returns column values with the timestamp with time zone data type as the ODBC
type SQL_TYPE_TIMESTAMP. The time zone information in the fetched value is truncated. Use this value if
your application needs to process values the same way as TIMESTAMP columns.

If set to 0 (Disabled), the driver returns column values with the timestamp with time zone data type as the
ODBC data type SQL_VARCHAR. Use this value if your application requires the time zone information in the
fetched value.

Default
0 (Disabled)

GUI Tab
Advanced tab

Fetch TWFS as Time
Attribute
FetchTWFSasTime (FTWFSAT)

Purpose
Determines whether the driver returns column values with the time data type as the ODBC data type
SQL_TYPE_TIME or SQL_TYPE_TIMESTAMP.

Supported only for Microsoft SQL Server 2008.

Valid Values
0 | 1

Behavior
If set to 1 (Enabled), the driver returns column values with the time data type as the ODBC data type
SQL_TYPE_TIME. The fractional seconds portion of the value is truncated.

If set to 0 (Disabled), the driver returns column values with the time data type as the ODBC data type
SQL_TYPE_TIMESTAMP. The fractional seconds portion of the value is preserved. Time columns are not
searchable when they are described and fetched as timestamp.

Notes
• When returning time with fractional seconds data as SQL_TYPE_TIMESTAMP, the Year, Month and Day

parts of the timestamp must be set to zero.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2160

Chapter 5: Connection option descriptions

Default
1 (Enabled)

GUI Tab
Advanced tab

Field Delimiter
Attribute
BulkLoadFieldDelimiter (BLFD)

Purpose
Specifies the character that the driver will use to delimit the field entries in a bulk load data file.

Valid Values
x

where:

x

is any printable character.

For simplicity, avoid using a value that can be in the data, including all alphanumeric characters, the dash(-),
the colon(:), the period (.), the forward slash (/), the space character, the single quote (') and the double quote
("). You can use some of these characters as delimiters if all of the data in the file is contained within double
quotes.

Notes
• The Bulk Load Field Delimiter character must be different from the Bulk Load Record Delimiter.

Default
None

GUI Tab
Bulk tab

GSS Client Library
Attribute
GSSClient (GSSC)

161The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Field Delimiter

Purpose
The name of the GSS client library that the driver uses to communicate with the Key Distribution Center (KDC).

The driver uses the path defined by the PATH environment variable for loading the specified client library.

Valid Values
native | client_library

where:

client_library

is a GSS client library installed on the client.

Behavior
If set to client_library, the driver uses the specified GSS client library.

If set to native, the driver uses the GSS client shipped with the operating system.

Default
native

GUI Tab
Security tab

Host Name
Attribute
HostName (HOST)

Purpose
The name, IP address, or alias of the server or instance to which you want to connect.

Valid Values
alias_name |IP_address |named_server |named_instance |server_name |virtual_network_name

where:

alias_name

is the alternate name of the server to which you want to connect. When specifying an alias name,
the driver uses the server name and port number value provided by the alias for the connection.
Aliases are created using the SQL Server Configuration Manager. Note that aliases are supported
only on Windows platforms.

IP_address

is the IP address of the server to which you want to connect. Specify this address as: IP_address.
For example, you can enter 199.226.224.34.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2162

Chapter 5: Connection option descriptions

The IP address can be specified in either IPv4 or IPv6 format. See "Using IP addresses" for details
about these formats.

named_server

is the named server address of the server to which you want to connect. Specify this address as:
named_server. For example, you can enter SSserver.

named_instance

is a named instance of Microsoft SQL Server, Windows Azure SQL Database, Microsoft Azure
Synapse Analytics, or Microsoft Analytics Platform System. Specify this address as:
server_name\instance_name.

virtual_network_name

is the virtual network name (VNN) of the availability group listener when using an Always On
Availability Group.

Notes
• For Microsoft Azure Synapse Analytics and Microsoft Analytics Platform System (APS), specifying an IP

address for the server is not supported. You must provide a named server to connect.

• When an alias name is specified with this option, port numbers settings provided by the alias take precedence
over the value of the Port Number (PortNumber) connection option.

• If only a server name is specified with no instance name, the driver uses the default instance on the server.

• If only a server name is specified with a backward slash \ or * at the end with no instance name, the driver
uses the first instance on the server with a TCP port.

Default
None

GUI Tab
General tab

See also
Using IP addresses on page 122

Host Name In Certificate
Attribute
HostNameInCertificate (HNIC)

Purpose
A host name for certificate validation when SSL encryption is enabled (Encryption Method=1) and validation
is enabled (Validate Server Certificate=1). This option provides additional security against
man-in-the-middle (MITM) attacks by ensuring that the server the driver is connecting to is the server that was
requested.

163The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Host Name In Certificate

Valid Values
host_name | #SERVERNAME#

where:

host_name

is the host name specified in the certificate. Consult your SSL administrator for the correct value.

Behavior
If set to a host name, the driver examines the subjectAltName values included in the certificate. If a dnsName
value is present in the subjectAltName values, then the driver compares the value specified for Host Name In
Certificate with the dnsName value. The connection succeeds if the values match. The connection fails if the
Host Name In Certificate value does not match the dnsName value.

If no subjectAltName values exist or a dnsName value is not in the list of subjectAltName values, then the
driver compares the value specified for Host Name In Certificate with the commonName part of the Subject
name in the certificate. The commonName typically contains the host name of the machine for which the
certificate was created. The connection succeeds if the values match. The connection fails if the Host Name
In Certificate value does not match the commonName. If multiple commonName parts exist in the Subject
name of the certificate, the connection succeeds if the Host Name In Certificate value matches any of the
commonName parts.

If set to #SERVERNAME#, the driver compares the host server name specified as part of a data source or
connection string to the dnsName or the commonName value.

Default
None

GUI Tab
Security tab

IANAAppCodePage
Attribute

IANAAppCodePage (IACP)

Purpose
An Internet Assigned Numbers Authority (IANA) value. You must specify a value for this option if your application
is not Unicode-enabled or if your database character set is not Unicode.

The driver uses the specified IANA code page to convert "W" (wide) functions to ANSI.

The driver and Driver Manager both check for the value of IANAAppCodePage in the following order:

• In the connection string

• In the Data Source section of the system information file (odbc.ini)

• In the ODBC section of the system information file (odbc.ini)

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2164

Chapter 5: Connection option descriptions

If the driver does not find an IANAAppCodePage value, the driver uses the default value of 4 (ISO 8859-1
Latin-1).

Valid Values
IANA_code_page

where:

IANA_code_page

is one of the valid values listed in "IANAAppCodePage values" in the Progress DataDirect for ODBC
Drivers Reference. The value must match the database character encoding and the system locale.

Default
4 (ISO 8559-1 Latin-1)

GUI Tab
Advanced tab

See Also
Refer to "Internationalization, localization, and Unicode" in the Progress DataDirect for ODBCDrivers Reference
for details.

Initialization String
Attribute
InitializationString (IS)

Purpose
A SQL command that is issued immediately after connecting to the database to manage session settings.

Valid Values
SQL_command

where:

SQL_command

is a valid SQL command that is supported by the database.

Example
To set the date format on every connection, specify:

Set DateStyle='ISO, MDY'

Notes
• If the statement fails to execute, the connection fails and the driver reports the error returned from the server.

165The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Initialization String

Default
None

GUI Tab
Advanced tab

Keep Connection Active
Attribute
KeepConnectionActive (KCA)

Purpose
Specifies whether the driver periodically sends lightweight SQL operations to the database after a connection
has been idle for the time specified by the Socket Idle Time (SocketIdleTimeCheckInterval) option. The
SQL operation resets the Azure SQL Gateway or database idle timeout timer to keep the connection open.

Valid Values
0 | 1

Behavior
If set to 0 (Disabled), the driver does not send lightweight SQL operations the database to keep the connection
open. Once a connection is idle for the duration specified by the Azure SQLGateway or database, the connection
times out.

If set to 1 (Enabled), the driver periodically sends lightweight SQL operations to the database to keep the
connection active. Once a connection is idle for the duration specified by the Socket Idle Time option, the driver
executes a lightweight query (Select 0) to the database to prevent the connection from timing out.

Default
0 (Disabled)

Notes
• This option differs from TCP Keep Alive (KeepAlive) in that it maintains the connection to the database or

Azure SQL Gateway, while TCP Keep Alive maintains only the TCP socket. If you have a database or
gateway timeout, you will need to enable this functionality to prevent your connection from terminating during
idle periods.

GUI Tab
Advanced tab

See Also
• Socket Idle Time on page 185

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2166

Chapter 5: Connection option descriptions

Key Cache Time To Live
Attribute
AEKeyCacheTTL (AETTL)

Purpose
Determines whether the driver caches column encryption keys. This option is used when Always Encrypted is
enabled (ColumnEncryption=Enabled | ResultsetOnly).

Valid Values
-1 | 0

Behavior
If set to -1, the driver caches column encryption keys on a per connection basis. The keys remain in the cache
until the connection is closed or the application exits.

If set to 0, the driver does not cache column encryption keys.

Notes
• Column encryption keys do not persist beyond the life of a connection. When a connection is closed, the

driver purges the cache, leaving no column encryption key data in memory.

• Caching column encryption keys can provide performance gains by eliminating the overhead associated
with fetching and decrypting the keys for the same data multiple times during a connection.

• While caching column encryption keys can improve performance, they are designed to be deleted from the
cache as a security measure. Therefore, we do not recommend caching keys for applications that remain
connected for long periods of time.

Default
-1 (No expiration)

GUI Tab
Security tab

See Also
• Column Encryption on page 145

• Always Encrypted on page 104

• Performance considerations on page 78

167The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Key Cache Time To Live

Key Store Principal Id
Attribute
AEKeystorePrincipalId (AEKSPI)

Purpose
Specifies the principal ID used to authenticate against Azure Key Vault. This option is used only when Always
Encrypted is enabled (ColumnEncryption=Enabled | ResultsetOnly) and Azure Key Vault is the keystore
provider. The Azure Key Vault stores the columnmaster key used for Always Encrypted functionality. To access
the column master key from the Azure Key Vault, the Client Secret and principal ID must be provided.

Valid Values
principal_id

where:

principal_id

is the Application ID created during Azure App Registration and used to authenticate against the
Azure Key Vault.

Notes
• To specify the Client Secret, use the Key Store Secret (AEKeystoreClientSecret) connection option.

• The driver currently supports only Azure App Registration as the principal ID.

• This option is used only when the Azure Key Vault is specified as the keystore provider in the encryption
metadata for result set columns or in statement parameters.

• The driver determines which keystore provider to use based on the encryption metadata received from the
server.

Default
None

GUI Tab
Security tab

See Also
• Column Encryption on page 145

• Key Store Secret on page 169

• Always Encrypted on page 104

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2168

Chapter 5: Connection option descriptions

Key Store Secret
Attribute
AEKeystoreClientSecret (AEKSCS)

Purpose
Specifies the Client Secret used to authenticate against the Azure Key Vault. This option is used only when
Always Encrypted is enabled (ColumnEncryption=Enabled | ResultsetOnly) and Azure Key Vault is
the keystore provider. The Azure Key Vault stores the columnmaster key used for Always Encrypted functionality.
To access the columnmaster key from the Azure Key Vault, the Client Secret and principal ID must be provided.

Valid Values
client_secret

where:

client_secret

is the client Secret used to authenticate against the Azure Key Vault.

Notes
• To specify the principal ID, use the Key Store Principal Id (AEKeystorePrincipalId) connection option.

• This option is used only when the Azure Key Vault is specified as the keystore provider in the encryption
metadata for result set columns or in statement parameters.

• The driver determines which keystore provider to use based on the encryption metadata received from the
server.

Default
None

GUI Tab
Security tab

See Also
• Column Encryption on page 145

• Key Store Principal Id on page 168

• Always Encrypted on page 104

Language
Attribute
Language (LANG)

169The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Key Store Secret

Purpose
The national language to use for Microsoft SQL Server system messages.

Valid Values
lang

where:

lang

is the language to use for Microsoft SQL Server systemmessages. This overrides the default language
specified for the login on the server. If no language is specified, the connection uses the default
language specified for the login on the server.

Default
None

GUI Tab
Advanced tab

Load Balance Timeout
Attribute
LoadBalanceTimeout (LBT)

Purpose
The number of seconds to keep inactive connections open in a connection pool. An inactive connection is a
database session that is not associated with an ODBC connection handle, that is, a connection in the pool that
is not in use by an application.

Valid Values
0 | x

where:

x

is a positive integer that specifies a number of seconds.

Behavior
If set to 0, inactive connections are kept open.

If set to x, inactive connections are closed after the specified number of seconds passes.

Notes
• The Min Pool Size option may cause some connections to ignore this value.

• This connection option can affect performance.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2170

Chapter 5: Connection option descriptions

Default
0

GUI Tab
Pooling tab

See also
Performance considerations on page 78

Load Balancing
Attribute
LoadBalancing (LB)

Purpose
Determines whether the driver uses client load balancing in its attempts to connect to the database servers
(primary and alternate). You can specify one or multiple alternate servers by setting the Alternate Servers
option.

Valid Values
0 | 1

Behavior
If set to 1 (Enabled), the driver uses client load balancing and attempts to connect to the database servers
(primary and alternate servers) in random order.

If set to 0 (Disabled), the driver does not use client load balancing and connects to each server based on their
sequential order (primary server first, then, alternate servers in the order they are specified).

Notes
• This option has no effect unless alternate servers are defined for the Alternate Servers connection option.

Default
0 (Disabled)

GUI Tab
Failover tab

Login Timeout
Attribute
LoginTimeout (LT)

171The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Load Balancing

Purpose
The number of seconds the driver waits for a connection to be established before returning control to the
application and generating a timeout error. To override the value that is set by this connection option for an
individual connection, set a different value in the SQL_ATTR_LOGIN_TIMEOUT connection attribute using
the SQLSetConnectAttr() function.

Valid Values
-1 | 0 | x

where:

x

is a positive integer that represents a number of seconds.

Behavior
If set to -1, the connection request does not time out. The driver silently ignores the
SQL_ATTR_LOGIN_TIMEOUT attribute.

If set to 0, the connection request does not time out, but the driver responds to the
SQL_ATTR_LOGIN_TIMEOUT attribute.

If set to x, the connection request times out after the specified number of seconds unless the application
overrides this setting with the SQL_ATTR_LOGIN_TIMEOUT attribute.

Default
15

GUI Tab
Advanced tab

Max Pool Size
Attribute
MaxPoolSize (MXPS)

Purpose
The maximum number of connections allowed within a single connection pool. When the maximum number of
connections is reached, no additional connections can be created in the connection pool.

Valid Values
An integer from 1 to 65535

For example, if set to 20, the maximum number of connections allowed in the pool is 20.

Notes
• This connection option can affect performance.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2172

Chapter 5: Connection option descriptions

Default
100

GUI Tab
Pooling tab

See also
Performance considerations on page 78

Min Pool Size
Attribute
MinPoolSize (MNPS)

Purpose
The minimum number of connections that are opened and placed in a connection pool, in addition to the active
connection, when the pool is created. The connection pool retains this number of connections, even when
some connections exceed their Load Balance Timeout value.

Valid Values
0 | x

Behavior
If set to 0, no connections are opened in addition to the current existing connection.

If set to x, the start-up number of connections in the pool is x in addition to the current existing connection.

Notes
• This connection option can affect performance.

Example
If set to 5, the start-up number of connections in the pool is 5 in addition to the current existing connection.

Default
0

GUI Tab
Pooling tab

See also
Performance considerations on page 78

173The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Min Pool Size

Multi-Subnet Failover
Attribute
MultiSubnetFailover (MSF)

Purpose
Determines whether the driver attempts parallel connections to the failover IP addresses of an Availability
Group during a multi-subnet failover. When Multi-Subnet Failover is enabled, the driver simultaneously attempts
to connect to all IP addresses associated with the Availability Group listener when the connection is broken or
the listener IP address becomes unavailable. The first IP address to successfully respond to the request is
used for the connection. Using parallel-connection attempts offers improved response time over traditional
failover, which attempts to connect to alternate servers one at a time.

Valid Values
1 | 0

Behavior
If set to 1 (Enabled), the driver attempts parallel connections to all failover IP addresses in an Availability Group
when the connection is broken or the listener IP address is unavailable. The first IP address to successfully
respond to the request is used for the connection. This setting is only supported when your environment is
configured for Always On Availability Groups.

If set to 0 (Disabled), the driver uses the failover method specified by the Failover Mode connection option
when the primary server is unavailable. Use this setting if your environment is not configured for Always On
Availability Groups.

Notes
• When MultiSubnetFalover is enabled, the virtual network name (VNN) of the availability group listener must

be specified by the Host Name connection option.

• When MultiSubnetFailover is enabled, the Alternate Servers, Load Balancing, and Failover Preconnect
connection options are disabled.

Default
0 (Disabled)

GUI Tab
Failover tab

Packet Size
Attribute
PacketSize (PS)

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2174

Chapter 5: Connection option descriptions

Purpose
Determines the number of bytes for each database protocol packet that is transferred from the database server
to the client machine. Adjusting the packet size can improve performance. The optimal value depends on the
typical size of data that is inserted, updated, or returned by the application and the environment in which it is
running. Typically, larger packet sizes work better for large amounts of data. For example, if an application
regularly returns character values that are 10,000 characters in length, using a value of 32 (16 KB) typically
results in improved performance.

Valid Values
-1 | 0 | x

Behavior
If set to -1, the driver uses the maximum packet size that is set by the database server.

If set to 0, the driver uses the default packet size that is used by the database server.

If set to x, an integer from 1 to 127, the driver uses a packet size that is a multiple of 512 bytes. For example,
PacketSize=8 means to set the packet size to 8 * 512 bytes (4096 bytes).

Notes
• If SSL encryption is used, the driver must use the packet size that is specified by the server. Any value set

for this option or the SQL_PACKET_SIZE connect option is ignored if SSL encryption is used.

• The ODBC connection option SQL_PACKET_SIZE provides the same functionality as the Packet Size
option; however SQL_PACKET SIZE and the Packet Size option are mutually exclusive. If Packet Size is
specified, the driver returns the message Driver Not Capable if an application attempts to call
SQL_PACKET_SIZE. If you do not set the Packet Size option, application calls to SQL_PACKET_SIZE are
accepted by the driver.

Default
-1

GUI Tab
Advanced tab

See also
Performance considerations on page 78

Password
Attribute
Password (PWD)

Purpose
The password that the application uses to connect to your database. The Password option cannot be specified
through the driver Setup dialog box and should not be stored in a data source. It is specified through the Logon
dialog box or a connection string.

175The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Password

Valid Values
pwd

where:

pwd

is a valid password.

Default
None

GUI Tab
n/a

Port Number
Attribute
PortNumber (PORT)

Purpose
The port number of the server listener.

Valid Values
port_name

where:

port_name

is the port number of the server listener. Check with your database administrator for the correct
number.

Default
1433

GUI Tab
General tab

PRNGSeedFile
Attribute
PRNGSeedFile (PSF)

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2176

Chapter 5: Connection option descriptions

Purpose

Specifies the absolute path for the entropy-source file or device used as a seed for SSL key
generation.

Valid Values
string | RANDFILE

where:

string

is the absolute path for the entropy-source file or device that seeds the random number generator
used for TLS/SSL key generation.

Behavior
If set to string, the specified entropy-source file or device seeds the random number generator used for
TLS/SSL key generation. Entropy levels and behavior may vary for different files and devices. See the following
section for a list of commonly used entropy sources and their behavior.

If set to RANDFILE, the RAND_file_name() function in your application generates a default path for the
random seed file. The seed file is $RANDFILE if that environment variable is set; otherwise, it is $HOME/.rnd.
If $HOME is not set either, an error occurs.

Common Valid Values
Although other entropy-source files may be specified, the following valid values are for files and devices that
are commonly used for seeding:

/dev/random

is a pseudorandom number generator (blocking) that creates a seed from random bits of environmental
noise it collects in an entropy pool. When there is insufficient noise in the pool, the file blocks calls
until enough noise is collected. This provides more secure SSL key generation, but at the expense
of blocked calls.

/dev/urandom

is a pseudorandom number generator (non-blocking) that creates seeds from random bits from
environmental noise it collects in an entropy pool. When there is insufficient noise in the pool, the
file reuses bits from the pool instead of blocking calls. This eliminates potential delays associated
with blocked calls, but may result in less secure TLS/SSL key generation.

/dev/hwrng

is a hardware random number generator. The behavior is dependent on the device used in your
environment.

177The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

PRNGSeedFile

Notes
• This option is ignored when TLS/SSL is disabled (EncryptionMethod=0) or the seed source is set to Poll

Only (PRNGSeedSource=1).

• For processes that employ multiple TLS/SSL-enabled drivers, the behavior of this option for all drivers is
determined by the values specified for the driver that first connects to the process and loads the OpenSSL
library. Since the OpenSSL library loads only once per process, the values specified for drivers that
subsequently connect are ignored. To ensure that the correct security settings are used, we recommend
configuring this option identically for all drivers used in a process.

Default
/dev/random

GUI tab
NA

See also
PRNGSeedSource on page 178

PRNGSeedSource
Attribute
PRNGSeedSource (PSS)

Purpose

Specifies the source of the seed the driver uses for TLS/SSL key generation. Seeds are a
pseudorandom or random value used to set the initial state of the random number generator used to generate
TLS/SSL keys. Using seeds with a higher level of entropy, or randomness, provides a more secure transmission
of data encrypted using TLS/SSL.

Valid Values
0 | 1

Behavior
If set to 0 (File), the driver uses entropy-source file or device specified in the PRNGSeedFile connection option
as the seed used for TLS/SSL key generation.

If set to 1 (Poll Only) , the driver uses the RAND_poll function in TLS/SSL to create the seed used for TLS/SSL
key generation.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2178

Chapter 5: Connection option descriptions

Notes
• For processes that employ multiple TLS/SSL-enabled drivers, the behavior of this option for all drivers is

determined by the values specified for the driver that first connects to the process and loads the OpenSSL
library. Since the OpenSSL library loads only once per process, the values specified for drivers that
subsequently connect are ignored. To ensure that the correct security settings are used, we recommend
configuring this option identically for all drivers used in a process.

• This option is ignored when TLS/SSL is disabled (EncryptionMethod=0)

Default
0 (File)

GUI Tab
NA

See also
PRNGSeedFile on page 176

Proxy Host
Attribute
ProxyHost (PXHN)

Purpose
Specifies the Hostname and possibly the Domain of the Proxy Server. The value specified can be a host name,
a fully qualified domain name, or an IPv4 or IPv6 address.

Valid Values
server_name | IP_address

where:

server_name

is the name of the server or a fully qualified domain name to which you want to connect.

The IP address can be specified in either IPv4 or IPv6 format, or a combination of the two. See
"Using IP addresses" for details about these formats.

Default
Empty string

Notes
• When proxy mode is disabled (ProxyMode=0), the Proxy Host option is ignored.

GUI Tab
General tab

179The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Proxy Host

See Also
• Using IP addresses on page 122

• Proxy Mode on page 180

• Proxy Password on page 181

• Proxy Port on page 181

• Proxy User on page 182

Proxy Mode
Attribute
ProxyMode (PXM)

Purpose
Determines whether the driver connects to your data source endpoint through an HTTP proxy server.

Valid Values
0 | 1

Behavior
If set to 0 (NONE), the driver connects directly to the data source endpoint specified by the Host Name connection
option.

If set to 1 (HTTP), the driver connects to the data source endpoint through the HTTP proxy server specified
by the ProxyHost connection option.

Default
0 (NONE)

GUI Tab
General tab

See Also
• Proxy Host on page 179

• Host Name on page 162

• Proxy Password on page 181

• Proxy Port on page 181

• Proxy User on page 182

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2180

Chapter 5: Connection option descriptions

Proxy Password
Attribute
ProxyPassword (PXPW)

Purpose
Specifies the password needed to connect to the Proxy Server.

Valid Values
String

where:

String

specifies the password to use to connect to the Proxy Server. Contact your system administrator to
obtain your password.

Notes
• When proxy mode is disabled (ProxyMode=0), the Proxy Password option is ignored.

• Proxy Password is required only when the proxy server has been configured to require authentication.

Default
Empty string

GUI Tab
General tab

See Also
• Using IP addresses on page 122

• Proxy Host on page 179

• Proxy Mode on page 180

• Proxy Port on page 181

• Proxy User on page 182

Proxy Port
Attribute
ProxyPort (PXPT)

181The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Proxy Password

Purpose
Specifies the port number where the Proxy Server is listening for HTTP requests.

Valid Values
port_name

where:

port_name

is the port number of the server listener. Check with your system administrator for the correct number.

Notes
• When proxy mode is disabled (ProxyMode=0), the Proxy Port option is ignored.

Default
0

GUI Tab
General tab

See Also
• Using IP addresses on page 122

• Proxy Host on page 179

• Proxy Mode on page 180

• Proxy Password on page 181

• Proxy User on page 182

Proxy User
Attribute
ProxyUser (PXU)

Purpose
Specifies the user name needed to connect to the Proxy Server.

Valid Values
The default user ID that is used to connect to the Proxy Server.

Notes
• When proxy mode is disabled (ProxyMode=0), the Proxy User option is ignored.

• Proxy User is required only when the proxy server has been configured to require authentication.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2182

Chapter 5: Connection option descriptions

Default
Empty string

GUI Tab
General tab

See Also
• Using IP addresses on page 122

• Proxy Host on page 179

• Proxy Mode on page 180

• Proxy Password on page 181

• Proxy Port on page 181

Query Timeout
Attribute
QueryTimeout (QT)

Purpose
The number of seconds for the default query timeout for all statements that are created by a connection. To
override the value set by this connection option for an individual statement, set a different value in the
SQL_ATTR_QUERY_TIMEOUT statement attribute on the SQLSetStmtAttr() function.

Valid Values
-1 | 0 | x

where:

x

is a positive integer that specifies a number of seconds.

Behavior
If set to -1, the query does not time out. The driver silently ignores the SQL_ATTR_QUERY_TIMEOUT attribute.

If set to 0, the query does not time out, but the driver responds to the SQL_ATTR_QUERY_TIMEOUT attribute.

If set to x, all queries time out after the specified number of seconds unless the application overrides this value
by setting the SQL_ATTR_QUERY_TIMEOUT attribute.

Default
0

GUI Tab
Advanced tab

183The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Query Timeout

Record Delimiter
Attribute
BulkLoadRecordDelimiter (BLRD)

Purpose
Specifies the character that the driver will use to delimit the record entries in a bulk load data file.

Valid Values
x

where:

x

is any printable character.

For simplicity, avoid using a value that can be in the data, including all alphanumeric characters, the dash(-),
the colon(:), the period (.), the forward slash (/), the space character, the single quote (') and the double quote
("). You can use some of these characters as delimiters if all of the data in the file is contained within double
quotes.

Notes
• The Bulk Load Record Delimiter character must be different from the Bulk Load Field Delimiter.

Default
None

GUI Tab
Bulk tab

Report Codepage Conversion Errors
Attribute
ReportCodepageConversionErrors (RCCE)

Purpose
Specifies how the driver handles code page conversion errors that occur when a character cannot be converted
from one character set to another.

An error message or warning can occur if an ODBC call causes a conversion error, or if an error occurs during
code page conversions to and from the database or to and from the application. The error or warning generated
is Code page conversion error encountered. In the case of parameter data conversion errors, the
driver adds the following sentence: Error in parameter x, where x is the parameter number. The standard
rules for returning specific row and column errors for bulk operations apply.

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2184

Chapter 5: Connection option descriptions

Valid Values
0 | 1 | 2

Behavior
If set to 0 (Ignore Errors), the driver substitutes 0x1A for each character that cannot be converted and does
not return a warning or error.

If set to 1 (Return Error), the driver returns an error instead of substituting 0x1A for unconverted characters.

If set to 2 (ReturnWarning), the driver substitutes 0x1A for each character that cannot be converted and returns
a warning.

Default
0 (Ignore Errors)

GUI Tab
Advanced tab

Socket Idle Time
Attribute
SocketIdleTimeCheckInterval (SITCI)

Purpose
Specifies the interval of time, in seconds, at which the driver checks the connection for activity when Keep
Connection Active is enabled (KeepConnectionActive=1). If no activity has been detected during this period,
the driver issues a lightweight query (Select 0) to the database to maintain the connection. This functionality
provides a method to keep open connections to data sources that use Azure SQL Gateway, such as Azure
SQL Database and Azure Synapse Analytics, during periods of inactivity.

Valid Values
x

where:

x

is the interval of time, in seconds, at which the driver checks the connection for activity.

Default
1500 (seconds)

GUI Tab
Advanced tab

See Also
• Keep Connection Active on page 166

185The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Socket Idle Time

SSLLibName
Attribute
SSLLibName (SLN)

Purpose
The absolute path for the OpenSSL library file containing the TLS/SSL library to be used by the data source
or connection when TLS/SSL is enabled. The SSL library contains the implementations of TLS/SSL protocols
the driver uses for data encryption.

This option allows you to designate a different SSL library if you encounter issues with the default version or
want to use a library that you provide. Common issues that require designating a different library include security
vulnerabilities with specific libraries or compatibility issues with your server or application.

Valid Values
absolute_path\openssl_filename

where:

absolute_path

is the absolute path to where the OpenSSL file is located

openssl_filename

is the name of the OpenSSL library file containing the TLS/SSL Library to be used by your data
source or connection.

Example
C:\Program Files\Progress\DataDirect\ODBC_80\Drivers\OpenSSL\1.0.2d\ddssl28.dll

Notes
• The OpenSSL library files provided by Progress combine the cryptographic and TLS/SSL libraries into a

single file; therefore, when your drivers are using a Progress library file, the values specified for the
CryptoLibName and SSLLibName options should be the same. For non-Progress library files, the libraries
may use separate files, which would require unique values to be specified.

• This option can be used to designate OpenSSL libraries not installed by the product; however, the drivers
are only certified against libraries provided by Progress.

Default
No default value

GUI Tab
The value for this option is specified as an option-value pair in the Extended Options field on the Advanced
tab. For example:

SSLLibName=C:\Program Files\Progress\DataDirect\

ODBC_80\Drivers\OpenSSL\1.0.2r\ddssl28.dll;

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2186

Chapter 5: Connection option descriptions

See also
• Advanced tab

• CryptoLibName on page 150

TCP Keep Alive
Attribute
KeepAlive (KA)

Purpose
Specifies whether the driver enables TCPKeepAlive. TCPKeepAlive maintains idle TCP connections by
periodically passing packets between the client and server. If either the client or server does not respond to a
packet, the connection is considered inactive and is terminated. In addition, TCPKeepAlive prevents valid idle
connections from being disconnected by firewalls and proxies by maintaining network activity.

Valid Values
0 | 1

Behavior
If set to 0 (Disabled), the driver does not enable TCPKeepAlive.

If set to 1 (Enabled), the driver enables TCPKeepAlive.

Default
0 (Disabled)

Notes
• This option differs from Keep Connection Active (KeepConnectionActive) in that it maintains only the TCP

socket, while Keep Connections Active maintains the connection to the database or Azure SQL Gateway.
If you have a database or gateway timeout, you will need to enable Keep Connection Active to prevent your
connection from terminating during idle periods.

GUI Tab
Advanced tab

See Also
• Keep Connection Active on page 166

Trust Store
Attribute
Truststore (TS)

187The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

TCP Keep Alive

Purpose
Specifies either the path and file name of the truststore file or the contents of the TLS/SSL certificates to be
used when SSL is enabled (Encryption Method=1 | 6 | 7) and server authentication is used.

Valid Values.
truststore_directory\filename | data://-----BEGIN
CERTIFICATE-----certificate_content-----END CERTIFICATE-----

where:

truststore_directory

is the path to the directory where the truststore file is located.

filename

is the file name of the truststore file.

certificate_content

is the content of the TLS/SSL certificate.

Notes
• If you do not specify the path to the directory that contains the truststore file, the current directory is used

for authentication.

• The keystore and truststore files may be the same file.

• When specifying content for multiple certificates, secify the content of each certificate between -----BEGIN
CERTIFICATE----- and -----END CERTIFICATE-----. For example:

-----BEGIN CERTIFICATE-----certificatecontent1-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----certificatecontent2-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----certificatecontent3-----END CERTIFICATE-----

Note that the number of dashes (-----) must be the same before and after both BEGIN CERTIFICATE
and END CERTIFICATE.

• When specifying the certificate content for authentication, do not specify the truststore password. Since the
truststore file is not required to be stored on the disk when the certificate content is specified directly, the
driver need not unlock its contents.

• The Trust Store field on the Driver setup dialog supports content up to 8192 characters in length. For
specifying certificate content longer than 8192 characters, edit the registry and manually add the entry to
the DSN.

• On Windows platforms, if the required certificates are available in the Windows certificate store, the Trust
Store and Truststore Password options need not be used.

Default
No default value

GUI Tab
Security tab

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2188

Chapter 5: Connection option descriptions

Trust Store Password
Attribute
TruststorePassword (TSP)

Purpose
The password that is used to access the truststore file when SSL is enabled (Encryption Method=1 | 6 |
7) and server authentication is used. The truststore file contains a list of the Certificate Authorities (CAs) that
the client trusts.

Valid Values
truststore_password

where:

truststore_password

is a valid password for the truststore file.

Notes
• The truststore and keystore files may be the same file; therefore, they may have the same password.

Default
None

GUI Tab
Security tab

Use Snapshot Transactions
Attribute
SnapshotSerializable (SS)

Purpose
Allows your application to use the snapshot isolation level if your Microsoft SQL Server database is configured
for Snapshot isolation. Supported only for Microsoft SQL Server 2005 and higher.

See "Using the Snapshot isolation level" for details about using the snapshot isolation level.

Valid Values
0 | 1

189The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Trust Store Password

Behavior
When set to 1 (Enabled) and your application has the transaction isolation level set to serializable, the application
uses the snapshot isolation level.

When set to 0 (Disabled) and your application has the transaction isolation level set to serializable, the application
uses the serializable isolation level.

This option is useful for existing applications that set the isolation level to serializable. Using Snapshot
Transactions in this case allows you to change to the snapshot isolation level with no or minimum code changes.
If developing a new application, you can code it to set the connection attribute SQL_COPT_SS_TXN_ISOLATION
to the value SQL_TXN_SS_SNAPSHOT.

Notes
• This connection option can affect performance.

Default
0 (Disabled)

GUI Tab
Advanced tab

See Also
• Using the Snapshot isolation level on page 125

• Performance considerations on page 78

User Name
Attribute
LogonID (UID)

Purpose
The default user ID that is used to connect to your database. Your ODBC application may override this value
or you may override it in the logon dialog box or connection string.

Valid Values
userid

where:

userid

is a valid user ID with permissions to access the database.

Default
None

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2190

Chapter 5: Connection option descriptions

GUI Tab
Security tab

Validate Server Certificate
Attribute
ValidateServerCertificate (VSC)

Purpose
Determines whether the driver validates the certificate that is sent by the database server when SSL encryption
is enabled (Encryption Method=1 | 6 | 7). When using SSL server authentication, any certificate sent by
the server must be issued by a trusted Certificate Authority (CA). Allowing the driver to trust any certificate
returned from the server even if the issuer is not a trusted CA is useful in test environments because it eliminates
the need to specify truststore information on each client in the test environment.

Truststore information is specified using the Trust Store and Trust Store Password options.

Valid Values
0 | 1

Behavior
If set to 1 (Enabled), the driver validates the certificate that is sent by the database server. Any certificate from
the server must be issued by a trusted CA in the truststore file. If the Host Name In Certificate option is specified,
the driver also validates the certificate using a host name. The Host Name In Certificate option provides
additional security against man-in-the-middle (MITM) attacks by ensuring that the server the driver is connecting
to is the server that was requested.

If set to 0 (Disabled), the driver does not validate the certificate that is sent by the database server. The driver
ignores any truststore information specified by the Trust Store and Trust Store Password options.

Default
1 (Enabled)

GUI Tab
Security tab

Workstation ID
Attribute
WorkstationID (WSID)

Purpose
The workstation ID that is used by the client.

191The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2

Validate Server Certificate

Valid Values
string

where:

string

is the workstation ID.

Default
None

GUI Tab
Advanced tab

XML Describe Type
Attribute
XMLDescribeType (XDT)

Purpose
The SQL data type that is returned by SQLGetTypeInfo for the XML data type.

See "Using the XML data type" for further information about the XML data type.

Valid Values
-4 | -10

Behavior
If set to -4 (SQL_LONGVARBINARY), the driver uses the description SQL_LONGVARBINARY for columns
that are defined as the XML data type.

If set to -10 (SQL_WLONGVARCHAR), the driver uses the description SQL_WLONGVARCHAR for columns
that are defined as the XML data type.

Default
-10

GUI Tab
Advanced tab

See Also
Using the XML data type on page 24

The Progress DataDirect for ODBC for SQL Server Wire Protocol: User's Guide: Version 8.0.2192

Chapter 5: Connection option descriptions

	Table of Contents
	Welcome to the Progress DataDirect for ODBC for SQL Server Wire Protocol Driver
	What's new in this release?
	Driver requirements
	ODBC compliance
	Version string information
	getFileVersionString function

	Support for multiple environments
	Support for Windows environments
	32-bit driver requirements
	64-bit driver requirements
	Setup of the driver
	Driver file names for Windows

	Support for UNIX and Linux environments
	32-bit driver requirements for UNIX/Linux
	64-bit drivers requirements for UNIX/Linux
	AIX
	HP-UX 11 aCC
	Linux
	Oracle Solaris
	Setup of the environment and the drivers
	Driver file names for UNIX/Linux

	Data types
	Unicode support
	Using the XML data type

	Retrieving data type information

	Troubleshooting
	Contacting Technical Support

	Getting started
	Configuring and connecting on Windows
	Configuring a data source
	Testing the connection

	Configuring and connecting on UNIX and Linux
	Environment configuration
	Test loading the driver
	Configuring a data source in the system information file
	Testing the connection

	Tutorials
	Accessing data in Microsoft Excel (Windows only)
	Accessing data in Microsoft Excel from the Query Wizard (Windows only)

	Using the driver
	Configuring and connecting to data sources
	Configuring the product on UNIX/Linux
	Environment variables
	Library search path
	ODBCINI
	ODBCINST
	DD_INSTALLDIR

	The test loading tool
	Data source configuration on UNIX/Linux
	Configuration Through the System Information (odbc.ini) File
	Sample default odbc.ini file

	The example application
	DSN-less connections
	Sample odbcinst.ini File

	File data sources
	UTF-16 applications on UNIX and Linux

	Data source configuration through a GUI
	Advanced tab
	Security tab
	Failover tab
	Pooling tab
	Bulk tab

	Using a connection string
	Using a logon dialog box
	Performance considerations

	Using failover
	Connection failover
	Extended connection failover
	Select connection failover
	Guidelines for primary and alternate servers
	Using client load balancing
	Using Connection Retry
	Configuring failover-related options
	A connection string example
	An odbc.ini file example

	Using security
	Authentication
	Kerberos authentication
	Access token authentication
	Azure Active Directory authentication
	Summary of authentication-related options
	Connection string examples for configuring authentication
	odbc.ini file examples for configuring authentication

	Data encryption across the network
	TLS/SSL encryption
	Certificates
	TLS/SSL server authentication
	Using SQL_COPT_INMEMORY_TRUSTSTORECERT
	Importing root certificates into the Windows certificate store
	Importing root certificates using Certificate Import Wizard
	Importing root certificates using a PowerShell script

	TLS/SSL client authentication
	Designating an OpenSSL Library
	Summary of Data Encryption Related Options
	Connection string examples for configuring data encryption
	odbc.ini file examples for configuring data encryption

	Always Encrypted
	Enabling Always Encrypted
	Using keystore providers
	Caching column encryption keys
	Connection string examples

	Using DataDirect Connection Pooling
	Creating a connection pool
	Adding connections to a pool
	Removing connections from a pool
	Handling dead connections in a pool
	Connection pool statistics
	Summary of pooling-related options

	Using DataDirect Bulk Load
	Bulk Export and Load Methods
	Exporting data from a database
	Bulk loading to a database
	The bulk load configuration file
	Bulk load configuration file schema
	Verification of the bulk load configuration file

	Sample applications
	Character set conversions
	External overflow files
	Limitations
	Summary of related options for DataDirect Bulk Load

	Using IP addresses
	XA interface support
	Binding parameter markers
	Isolation and lock levels supported
	Using the Snapshot isolation level

	Number of connections and statements supported
	SQL support
	Using arrays of parameters
	Support for Azure Synapse Analytics and Analytics Platform System
	Inserts on IDENTITY columns in data replication scenarios

	Connection option descriptions
	AllowedOpenSSLVersions
	Alternate Servers
	Always Report Trigger Results
	AnsiNPW
	Application Intent
	Application Name
	Application Using Threads
	Authentication Method
	Batch Size
	Bulk Binary Threshold
	Bulk Character Threshold
	Bulk Load Threshold
	Bulk Options
	Column Encryption
	Connection Pooling
	Connection Reset
	Connection Retry Count
	Connection Retry Delay
	Crypto Protocol Version
	CryptoLibName
	Data Source Name
	Database
	Description
	Domain
	Enable Bulk Load
	Enable Quoted Identifiers
	Enable Replication User
	Enable Server Side Cursors
	Encryption Method
	Failover Granularity
	Failover Mode
	Failover Preconnect
	Fetch TSWTZ as Timestamp
	Fetch TWFS as Time
	Field Delimiter
	GSS Client Library
	Host Name
	Host Name In Certificate
	IANAAppCodePage
	Initialization String
	Keep Connection Active
	Key Cache Time To Live
	Key Store Principal Id
	Key Store Secret
	Language
	Load Balance Timeout
	Load Balancing
	Login Timeout
	Max Pool Size
	Min Pool Size
	Multi-Subnet Failover
	Packet Size
	Password
	Port Number
	PRNGSeedFile
	PRNGSeedSource
	Proxy Host
	Proxy Mode
	Proxy Password
	Proxy Port
	Proxy User
	Query Timeout
	Record Delimiter
	Report Codepage Conversion Errors
	Socket Idle Time
	SSLLibName
	TCP Keep Alive
	Trust Store
	Trust Store Password
	Use Snapshot Transactions
	User Name
	Validate Server Certificate
	Workstation ID
	XML Describe Type

